Release v0.1.6

Former-commit-id: 43c8b3c3c8bfb2e32d17fb3e8b194938e37d54bd
This commit is contained in:
hiyouga
2023-08-11 23:25:57 +08:00
parent 2144bb0e27
commit d5f1b99ac4
18 changed files with 127 additions and 41 deletions

View File

@@ -65,7 +65,7 @@ def init_adapter(
assert os.path.exists(os.path.join(model_args.checkpoint_dir[0], CONFIG_NAME)), \
"The given checkpoint may be not a LoRA checkpoint, please specify `--finetuning_type full/freeze` instead."
if (is_trainable and model_args.resume_lora_training) or (not is_mergeable): # continually train on the lora weights
if (is_trainable and finetuning_args.resume_lora_training) or (not is_mergeable): # continually fine-tuning
checkpoints_to_merge, latest_checkpoint = model_args.checkpoint_dir[:-1], model_args.checkpoint_dir[-1]
else:
checkpoints_to_merge = model_args.checkpoint_dir

View File

@@ -18,7 +18,7 @@ logger = get_logger(__name__)
def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["TrainerCallback"]] = None):
model_args, data_args, training_args, finetuning_args, generating_args, general_args = get_train_args(args)
callbacks = [LogCallback()] if callbacks is None else callbacks + [LogCallback()]
callbacks = [LogCallback()] if callbacks is None else callbacks
if general_args.stage == "pt":
run_pt(model_args, data_args, training_args, finetuning_args, callbacks)