Feature BAdam

Former-commit-id: d8d2807fbcf587c37f7fd34a23e9397d2775ceed
This commit is contained in:
Jonery
2024-04-15 23:15:27 +08:00
parent 276f2cb24e
commit d4d471450f
9 changed files with 195 additions and 7 deletions

View File

@@ -287,12 +287,69 @@ def _create_loraplus_optimizer(
logger.info("Using LoRA+ optimizer with loraplus lr ratio {:.2f}.".format(finetuning_args.loraplus_lr_ratio))
return optimizer
def _create_badam_optimizer(
model: "PreTrainedModel",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
) -> "torch.optim.Optimizer":
from transformers.trainer_pt_utils import get_parameter_names
decay_parameters = list(filter(lambda n: "bias" not in n, get_parameter_names(model, ALL_LAYERNORM_LAYERS)))
# filter out the embedding layers when using badam ratio mode
if finetuning_args.badam_mode == "ratio":
decay_parameters = list(filter(lambda n: "embed" not in n, decay_parameters)) # TODO: make it more general
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if n in decay_parameters],
"weight_decay": training_args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if n not in decay_parameters],
"weight_decay": 0.0,
},
]
optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
# create BlockOptimizer
if finetuning_args.badam_mode == "layer":
from badam import BlockOptimizer
base_optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
optimizer = BlockOptimizer(base_optimizer=base_optimizer,
named_parameters_list=list(model.named_parameters()),
block_prefix_list=None,
switch_block_every=finetuning_args.switch_block_every,
start_block=finetuning_args.start_block,
switch_mode=finetuning_args.switch_mode,
verbose=finetuning_args.badam_verbose)
logger.info(f"Using BAdam optimizer with layer-wise update, switch mode is {finetuning_args.switch_mode}, "
f"switch block every {finetuning_args.switch_block_every} steps, "
f"default start block is {finetuning_args.start_block}")
elif finetuning_args.badam_mode == "ratio":
assert finetuning_args.badam_update_ratio > 0.
from badam import BlockOptimizerRatio
optimizer = BlockOptimizerRatio(param_groups=optimizer_grouped_parameters,
named_parameters_list=list(model.named_parameters()),
update_ratio=finetuning_args.badam_update_ratio,
mask_mode=finetuning_args.badam_mask_mode,
verbose=finetuning_args.badam_verbose,
**optimizer_kwargs)
logger.info(f"Using BAdam optimizer with ratio update, update ratio is {finetuning_args.badam_update_ratio}, "
f"mask mode is {finetuning_args.badam_mask_mode}")
return optimizer
def create_custom_optimzer(
model: "PreTrainedModel",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
) -> Optional["torch.optim.Optimizer"]:
if finetuning_args.use_badam:
return _create_badam_optimizer(model, training_args, finetuning_args)
if finetuning_args.use_galore:
return _create_galore_optimizer(model, training_args, finetuning_args)