support DPO training (2305.18290)

Former-commit-id: 6d98de148e4af63a7028dfaeb6cf86eb56a4488f
This commit is contained in:
hiyouga
2023-08-11 03:02:53 +08:00
parent 72dfd74005
commit ca719a8697
33 changed files with 513 additions and 192 deletions

View File

@@ -1,11 +1,9 @@
# Inspired by:
# https://github.com/lvwerra/trl/blob/main/examples/research_projects/stack_llama/scripts/rl_training.py
# Inspired by: https://github.com/lvwerra/trl/blob/main/examples/research_projects/stack_llama/scripts/rl_training.py
import math
from typing import TYPE_CHECKING
from trl import PPOConfig
from torch.optim import AdamW
from typing import Optional, List
from typing import TYPE_CHECKING, Optional, List
from transformers import DataCollatorForSeq2Seq
from transformers.optimization import get_scheduler
@@ -16,7 +14,7 @@ from llmtuner.tuner.ppo.trainer import PPOPeftTrainer
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments
def run_ppo(
@@ -24,6 +22,7 @@ def run_ppo(
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
callbacks: Optional[List["TrainerCallback"]] = None
):
dataset = get_dataset(model_args, data_args)
@@ -42,8 +41,9 @@ def run_ppo(
)
optimizer = AdamW(filter(lambda p: p.requires_grad, model.parameters()), lr=training_args.learning_rate)
total_train_batch_size = \
total_train_batch_size = (
training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
)
num_training_steps = training_args.num_train_epochs * math.ceil(len(dataset) / total_train_batch_size)
lr_scheduler = get_scheduler(
training_args.lr_scheduler_type,
@@ -56,6 +56,7 @@ def run_ppo(
ppo_trainer = PPOPeftTrainer(
training_args=training_args,
finetuning_args=finetuning_args,
generating_args=generating_args,
callbacks=callbacks,
config=ppo_config,
model=model,
@@ -67,8 +68,10 @@ def run_ppo(
lr_scheduler=lr_scheduler
)
ppo_trainer.ppo_train(max_target_length=data_args.max_target_length)
ppo_trainer.save_model()
ppo_trainer.save_state() # must be after save_model
if ppo_trainer.is_world_process_zero() and model_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "reward"])
# Training
if training_args.do_train:
ppo_trainer.ppo_train(max_target_length=data_args.max_target_length)
ppo_trainer.save_model()
ppo_trainer.save_state() # must be called after save_model to have a folder
if ppo_trainer.is_world_process_zero() and model_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "reward"])