support DPO training (2305.18290)

Former-commit-id: 6d98de148e4af63a7028dfaeb6cf86eb56a4488f
This commit is contained in:
hiyouga
2023-08-11 03:02:53 +08:00
parent 72dfd74005
commit ca719a8697
33 changed files with 513 additions and 192 deletions

View File

@@ -39,7 +39,7 @@ def init_adapter(
if finetuning_args.finetuning_type == "none" and is_trainable:
raise ValueError("You cannot use finetuning_type=none while training.")
if finetuning_args.finetuning_type == "full":
if finetuning_args.finetuning_type == "full" and is_trainable:
logger.info("Fine-tuning method: Full")
model = model.float()

View File

@@ -34,7 +34,7 @@ check_min_version("4.29.1")
require_version("datasets>=2.12.0", "To fix: pip install datasets>=2.12.0")
require_version("accelerate>=0.21.0", "To fix: pip install accelerate>=0.21.0")
require_version("peft>=0.4.0", "To fix: pip install peft>=0.4.0")
require_version("trl>=0.4.7", "To fix: pip install trl>=0.4.7")
require_version("trl>=0.5.0", "To fix: pip install trl>=0.5.0")
def load_model_and_tokenizer(
@@ -52,9 +52,6 @@ def load_model_and_tokenizer(
logger.warning("Checkpoint is not found at evaluation, load the original model.")
finetuning_args = FinetuningArguments(finetuning_type="none")
assert stage in ["pt", "sft"] or finetuning_args.finetuning_type == "lora", \
"RM and PPO training can only be performed with the LoRA method."
config_kwargs = {
"trust_remote_code": True,
"cache_dir": model_args.cache_dir,
@@ -132,8 +129,6 @@ def load_model_and_tokenizer(
})
if stage == "ppo": # load reward model
assert is_trainable, "PPO stage cannot be performed at evaluation."
assert model_args.reward_model is not None, "Reward model is necessary for PPO training."
logger.info("Load reward model from {}".format(model_args.reward_model))
model.pretrained_model.load_adapter(model_args.reward_model, "reward", is_trainable=False)
assert load_valuehead_params(model, model_args.reward_model), "Reward model is not correctly loaded."

View File

@@ -19,7 +19,7 @@ from llmtuner.hparams import (
logger = get_logger(__name__)
def _parse_args(parser: HfArgumentParser, args: Optional[Dict[str, Any]] = None):
def _parse_args(parser: HfArgumentParser, args: Optional[Dict[str, Any]] = None) -> Tuple[Any]:
if args is not None:
return parser.parse_dict(args)
elif len(sys.argv) == 2 and sys.argv[1].endswith(".yaml"):
@@ -32,26 +32,53 @@ def _parse_args(parser: HfArgumentParser, args: Optional[Dict[str, Any]] = None)
def parse_train_args(
args: Optional[Dict[str, Any]] = None
) -> Tuple[ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneralArguments]:
) -> Tuple[
ModelArguments,
DataArguments,
Seq2SeqTrainingArguments,
FinetuningArguments,
GeneratingArguments,
GeneralArguments
]:
parser = HfArgumentParser((
ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneralArguments
ModelArguments,
DataArguments,
Seq2SeqTrainingArguments,
FinetuningArguments,
GeneratingArguments,
GeneralArguments
))
return _parse_args(parser, args)
def parse_infer_args(
args: Optional[Dict[str, Any]] = None
) -> Tuple[ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]:
) -> Tuple[
ModelArguments,
DataArguments,
FinetuningArguments,
GeneratingArguments
]:
parser = HfArgumentParser((
ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments
ModelArguments,
DataArguments,
FinetuningArguments,
GeneratingArguments
))
return _parse_args(parser, args)
def get_train_args(
args: Optional[Dict[str, Any]] = None
) -> Tuple[ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneralArguments]:
model_args, data_args, training_args, finetuning_args, general_args = parse_train_args(args)
) -> Tuple[
ModelArguments,
DataArguments,
Seq2SeqTrainingArguments,
FinetuningArguments,
GeneratingArguments,
GeneralArguments
]:
model_args, data_args, training_args, finetuning_args, generating_args, general_args = parse_train_args(args)
# Setup logging
if training_args.should_log:
@@ -68,7 +95,7 @@ def get_train_args(
data_args.init_for_training()
if general_args.stage != "sft" and training_args.predict_with_generate:
raise ValueError("`predict_with_generate` cannot be set as True at PT, RM and PPO stages.")
raise ValueError("`predict_with_generate` cannot be set as True except SFT.")
if training_args.do_train and training_args.predict_with_generate:
raise ValueError("`predict_with_generate` cannot be set as True while training.")
@@ -76,6 +103,15 @@ def get_train_args(
if general_args.stage == "sft" and training_args.do_predict and not training_args.predict_with_generate:
raise ValueError("Please enable `predict_with_generate` to save model predictions.")
if general_args.stage in ["rm", "ppo"] and finetuning_args.finetuning_type != "lora":
raise ValueError("RM and PPO training can only be performed with the LoRA method.")
if general_args.stage in ["ppo", "dpo"] and not training_args.do_train:
raise ValueError("PPO and DPO stage can only be performed at training.")
if general_args.stage == "ppo" and model_args.reward_model is None:
raise ValueError("Reward model is necessary for PPO training.")
if training_args.max_steps == -1 and data_args.streaming:
raise ValueError("Please specify `max_steps` in streaming mode.")
@@ -133,12 +169,17 @@ def get_train_args(
# Set seed before initializing model.
transformers.set_seed(training_args.seed)
return model_args, data_args, training_args, finetuning_args, general_args
return model_args, data_args, training_args, finetuning_args, generating_args, general_args
def get_infer_args(
args: Optional[Dict[str, Any]] = None
) -> Tuple[ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]:
) -> Tuple[
ModelArguments,
DataArguments,
FinetuningArguments,
GeneratingArguments
]:
model_args, data_args, finetuning_args, generating_args = parse_infer_args(args)
if model_args.quantization_bit is not None and finetuning_args.finetuning_type != "lora":

View File

@@ -13,26 +13,25 @@ from llmtuner.extras.logging import get_logger
from llmtuner.extras.save_and_load import get_state_dict, load_trainable_params
if TYPE_CHECKING:
from transformers import PreTrainedTokenizer, Seq2SeqTrainingArguments, TrainerState
from llmtuner.hparams import FinetuningArguments
logger = get_logger(__name__)
class PeftTrainer(Seq2SeqTrainer):
class PeftModelMixin:
r"""
Inherits Seq2SeqTrainer to support parameter-efficient checkpoints.
Patches the save and load methods in Hugging Face Trainer for PeftModel and ModelWithValueHead.
"""
def __init__(self, finetuning_args: "FinetuningArguments", **kwargs):
super().__init__(**kwargs)
self.finetuning_args = finetuning_args
self._remove_log()
def _remove_log(self):
if self.is_world_process_zero() and os.path.exists(os.path.join(self.args.output_dir, "trainer_log.jsonl")):
logger.warning("Previous log file in this folder will be deleted.")
os.remove(os.path.join(self.args.output_dir, "trainer_log.jsonl"))
def __init__(self) -> None: # for type checking
self.model: PreTrainedModel = None
self.tokenizer: "PreTrainedTokenizer" = None
self.args: "Seq2SeqTrainingArguments" = None
self.finetuning_args: "FinetuningArguments" = None
self.state: "TrainerState" = None
raise AssertionError("Mixin should not be initialized.")
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, torch.Tensor]] = None) -> None:
r"""
@@ -96,3 +95,13 @@ class PeftTrainer(Seq2SeqTrainer):
model.load_adapter(self.state.best_model_checkpoint, model.active_adapter)
else: # freeze/full-tuning
load_trainable_params(model, self.state.best_model_checkpoint)
class PeftTrainer(PeftModelMixin, Seq2SeqTrainer):
r"""
Inherits Seq2SeqTrainer to support parameter-efficient checkpoints.
"""
def __init__(self, finetuning_args: "FinetuningArguments", **kwargs):
Seq2SeqTrainer.__init__(self, **kwargs)
self.finetuning_args = finetuning_args