Former-commit-id: 54d5f62d29456a8d9d0c0dd3d0bbfffe48935803
This commit is contained in:
hiyouga
2024-03-20 17:59:45 +08:00
parent d8073488be
commit c7af26a9e3
12 changed files with 104 additions and 48 deletions

View File

@@ -4,28 +4,41 @@ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
from transformers import Seq2SeqTrainer
from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger
from ..utils import create_custom_optimzer
if TYPE_CHECKING:
from transformers.trainer import PredictionOutput
from ...hparams import FinetuningArguments
logger = get_logger(__name__)
class CustomSeq2SeqTrainer(Seq2SeqTrainer):
r"""
Inherits PeftTrainer to compute generative metrics such as BLEU and ROUGE.
Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE.
"""
def __init__(self, finetuning_args: "FinetuningArguments", **kwargs) -> None:
super().__init__(**kwargs)
self.finetuning_args = finetuning_args
def create_optimizer_and_scheduler(self, num_training_steps: int) -> None:
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args, num_training_steps)
if self.optimizer is None:
self.create_optimizer()
self.create_scheduler(num_training_steps=num_training_steps, optimizer=self.optimizer)
def prediction_step(
self,
model: nn.Module,
model: "torch.nn.Module",
inputs: Dict[str, Union[torch.Tensor, Any]],
prediction_loss_only: bool,
ignore_keys: Optional[List[str]] = None,

View File

@@ -9,10 +9,9 @@ from ...extras.constants import IGNORE_INDEX
from ...extras.misc import get_logits_processor
from ...extras.ploting import plot_loss
from ...model import load_model, load_tokenizer
from ...train.sft.metric import ComputeMetrics
from ...train.sft.trainer import CustomSeq2SeqTrainer
from ...train.utils import create_modelcard_and_push
from ..utils import create_custom_optimzer
from ..utils import create_modelcard_and_push
from .metric import ComputeMetrics
from .trainer import CustomSeq2SeqTrainer
if TYPE_CHECKING:
@@ -50,14 +49,13 @@ def run_sft(
training_args.generation_num_beams = data_args.eval_num_beams or training_args.generation_num_beams
# Initialize our Trainer
optimizer = create_custom_optimzer(model, dataset, training_args, finetuning_args)
trainer = CustomSeq2SeqTrainer(
model=model,
args=training_args,
finetuning_args=finetuning_args,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks,
optimizers=(optimizer, None),
compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else None,
**split_dataset(dataset, data_args, training_args),
)