Former-commit-id: 54d5f62d29456a8d9d0c0dd3d0bbfffe48935803
This commit is contained in:
@@ -6,25 +6,36 @@ import torch
|
||||
from transformers import Trainer
|
||||
|
||||
from ...extras.logging import get_logger
|
||||
from ..utils import create_custom_optimzer
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.trainer import PredictionOutput
|
||||
|
||||
from ...hparams import FinetuningArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class PairwiseTrainer(Trainer):
|
||||
r"""
|
||||
Inherits PeftTrainer to compute pairwise loss.
|
||||
Inherits Trainer to compute pairwise loss.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
def __init__(self, finetuning_args: "FinetuningArguments", **kwargs) -> None:
|
||||
super().__init__(**kwargs)
|
||||
self.finetuning_args = finetuning_args
|
||||
self.can_return_loss = True # override property to return eval_loss
|
||||
|
||||
def create_optimizer_and_scheduler(self, num_training_steps: int) -> None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args, num_training_steps)
|
||||
if self.optimizer is None:
|
||||
self.create_optimizer()
|
||||
|
||||
self.create_scheduler(num_training_steps=num_training_steps, optimizer=self.optimizer)
|
||||
|
||||
def compute_loss(
|
||||
self, model: "PreTrainedModel", inputs: Dict[str, torch.Tensor], return_outputs: bool = False
|
||||
) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]]]:
|
||||
|
||||
@@ -7,7 +7,7 @@ from ...extras.callbacks import FixValueHeadModelCallback
|
||||
from ...extras.misc import fix_valuehead_checkpoint
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...model import load_model, load_tokenizer
|
||||
from ..utils import create_custom_optimzer, create_modelcard_and_push
|
||||
from ..utils import create_modelcard_and_push
|
||||
from .collator import PairwiseDataCollatorWithPadding
|
||||
from .metric import compute_accuracy
|
||||
from .trainer import PairwiseTrainer
|
||||
@@ -35,14 +35,13 @@ def run_rm(
|
||||
training_args.remove_unused_columns = False # important for pairwise dataset
|
||||
|
||||
# Initialize our Trainer
|
||||
optimizer = create_custom_optimzer(model, dataset, training_args, finetuning_args)
|
||||
trainer = PairwiseTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
finetuning_args=finetuning_args,
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks + [FixValueHeadModelCallback()],
|
||||
optimizers=(optimizer, None),
|
||||
compute_metrics=compute_accuracy,
|
||||
**split_dataset(dataset, data_args, training_args),
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user