Former-commit-id: 54d5f62d29456a8d9d0c0dd3d0bbfffe48935803
This commit is contained in:
hiyouga
2024-03-20 17:59:45 +08:00
parent d8073488be
commit c7af26a9e3
12 changed files with 104 additions and 48 deletions

View File

@@ -6,25 +6,36 @@ import torch
from transformers import Trainer
from ...extras.logging import get_logger
from ..utils import create_custom_optimzer
if TYPE_CHECKING:
from transformers.modeling_utils import PreTrainedModel
from transformers.trainer import PredictionOutput
from ...hparams import FinetuningArguments
logger = get_logger(__name__)
class PairwiseTrainer(Trainer):
r"""
Inherits PeftTrainer to compute pairwise loss.
Inherits Trainer to compute pairwise loss.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def __init__(self, finetuning_args: "FinetuningArguments", **kwargs) -> None:
super().__init__(**kwargs)
self.finetuning_args = finetuning_args
self.can_return_loss = True # override property to return eval_loss
def create_optimizer_and_scheduler(self, num_training_steps: int) -> None:
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args, num_training_steps)
if self.optimizer is None:
self.create_optimizer()
self.create_scheduler(num_training_steps=num_training_steps, optimizer=self.optimizer)
def compute_loss(
self, model: "PreTrainedModel", inputs: Dict[str, torch.Tensor], return_outputs: bool = False
) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]]]:

View File

@@ -7,7 +7,7 @@ from ...extras.callbacks import FixValueHeadModelCallback
from ...extras.misc import fix_valuehead_checkpoint
from ...extras.ploting import plot_loss
from ...model import load_model, load_tokenizer
from ..utils import create_custom_optimzer, create_modelcard_and_push
from ..utils import create_modelcard_and_push
from .collator import PairwiseDataCollatorWithPadding
from .metric import compute_accuracy
from .trainer import PairwiseTrainer
@@ -35,14 +35,13 @@ def run_rm(
training_args.remove_unused_columns = False # important for pairwise dataset
# Initialize our Trainer
optimizer = create_custom_optimzer(model, dataset, training_args, finetuning_args)
trainer = PairwiseTrainer(
model=model,
args=training_args,
finetuning_args=finetuning_args,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks + [FixValueHeadModelCallback()],
optimizers=(optimizer, None),
compute_metrics=compute_accuracy,
**split_dataset(dataset, data_args, training_args),
)