refactor mm training
Former-commit-id: 179c0558699e287cbf38a2d73bff47e86d589c5a
This commit is contained in:
271
src/llamafactory/data/mm_plugin.py
Normal file
271
src/llamafactory/data/mm_plugin.py
Normal file
@@ -0,0 +1,271 @@
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
||||
|
||||
from PIL.Image import Image
|
||||
from transformers import ProcessorMixin
|
||||
|
||||
from ..extras.constants import IGNORE_INDEX, IMAGE_PLACEHOLDER
|
||||
from ..extras.packages import is_pillow_available
|
||||
|
||||
|
||||
if is_pillow_available():
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from PIL.Image import Image as ImageObject
|
||||
from transformers import PreTrainedTokenizer, ProcessorMixin
|
||||
from transformers.image_processing_utils import BaseImageProcessor
|
||||
|
||||
|
||||
def get_pixel_values(images: Sequence["ImageObject"], processor: "ProcessorMixin") -> "torch.Tensor":
|
||||
r"""
|
||||
Processes visual inputs. (currently only supports a single image)
|
||||
|
||||
Returns:
|
||||
pixel_values: tensor with shape (B, C, H, W)
|
||||
"""
|
||||
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
|
||||
image = images[0] if len(images) != 0 else Image.new("RGB", (100, 100), (255, 255, 255))
|
||||
return image_processor([image], return_tensors="pt")["pixel_values"]
|
||||
|
||||
|
||||
def get_paligemma_token_type_ids(input_len: int, processor: "ProcessorMixin") -> List[List[int]]:
|
||||
r"""
|
||||
Gets paligemma token type ids for computing loss.
|
||||
|
||||
Returns:
|
||||
token_type_ids: shape (1, seq_len)
|
||||
"""
|
||||
image_seq_length = getattr(processor, "image_seq_length")
|
||||
return [[0] * image_seq_length + [1] * (input_len - image_seq_length)]
|
||||
|
||||
|
||||
def get_qwen2vl_image_inputs(
|
||||
images: Sequence["ImageObject"], processor: "ProcessorMixin"
|
||||
) -> Dict[str, "torch.Tensor"]:
|
||||
r"""
|
||||
Processes qwen2-vl visual inputs. Supports multiple images.
|
||||
|
||||
Returns:
|
||||
pixel_values: tensor with shape (num_patches, patch_dim)
|
||||
image_grid_thw: tensot with shape (num_images, 3), where the three numbers are time, width, height
|
||||
|
||||
It holds num_patches == torch.prod(image_grid_thw)
|
||||
"""
|
||||
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
|
||||
if len(images) != 0:
|
||||
image_inputs = image_processor(images=images, return_tensors="pt")
|
||||
else:
|
||||
image = Image.new("RGB", (56, 56), (255, 255, 255))
|
||||
image_inputs = image_processor(images=[image], return_tensors="pt")
|
||||
image_inputs["image_grid_thw"][0][0] = 0 # fake image
|
||||
|
||||
return {"pixel_values": image_inputs["pixel_values"], "image_grid_thw": image_inputs["image_grid_thw"]}
|
||||
|
||||
|
||||
class BasePlugin:
|
||||
def __init__(self, image_token: str) -> None:
|
||||
self.image_token = image_token
|
||||
|
||||
def process_messages(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
images: Sequence["ImageObject"],
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> List[Dict[str, str]]:
|
||||
return messages
|
||||
|
||||
def process_token_ids(
|
||||
self,
|
||||
input_ids: List[int],
|
||||
labels: Optional[List[int]],
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> Tuple[List[int], Optional[List[int]]]:
|
||||
return input_ids, labels
|
||||
|
||||
def get_mm_inputs(
|
||||
self,
|
||||
images: Sequence["ImageObject"],
|
||||
feature_seqlens: Dict[str, int],
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> Dict[str, Any]:
|
||||
return {}
|
||||
|
||||
def process_model_inputs(
|
||||
self,
|
||||
model_inputs: Dict[str, List[Any]],
|
||||
images: Sequence["ImageObject"],
|
||||
feature_seqlens: Dict[str, int],
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> None:
|
||||
return
|
||||
|
||||
|
||||
class LlavaPlugin(BasePlugin):
|
||||
def process_messages(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
images: Sequence["ImageObject"],
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> List[Dict[str, str]]:
|
||||
image_count = 0
|
||||
new_messages = []
|
||||
for message in messages:
|
||||
content = message["content"]
|
||||
while IMAGE_PLACEHOLDER in content:
|
||||
image_count += 1
|
||||
if image_count > 1:
|
||||
raise ValueError("Llava model only accepts one image per sample.")
|
||||
|
||||
content = content.replace(IMAGE_PLACEHOLDER, self.image_token, 1)
|
||||
|
||||
new_messages.append({"role": message["role"], "content": content})
|
||||
|
||||
return new_messages
|
||||
|
||||
def get_mm_inputs(
|
||||
self,
|
||||
images: Sequence["ImageObject"],
|
||||
feature_seqlens: Dict[str, int],
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> Dict[str, Any]:
|
||||
return {"pixel_values": get_pixel_values(images, processor)}
|
||||
|
||||
def process_model_inputs(
|
||||
self,
|
||||
model_inputs: Dict[str, List[Any]],
|
||||
images: Sequence["ImageObject"],
|
||||
feature_seqlens: Dict[str, int],
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> None:
|
||||
mm_inputs = self.get_mm_inputs(images, feature_seqlens, processor)
|
||||
model_inputs["pixel_values"].append(mm_inputs["pixel_values"][0])
|
||||
|
||||
|
||||
class PaliGemmaPlugin(BasePlugin):
|
||||
def process_messages(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
images: Sequence["ImageObject"],
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> List[Dict[str, str]]:
|
||||
image_count = 0
|
||||
new_messages = []
|
||||
for message in messages:
|
||||
content = message["content"]
|
||||
while IMAGE_PLACEHOLDER in content:
|
||||
image_count += 1
|
||||
if image_count > 1:
|
||||
raise ValueError("PaliGemma model only accepts one image per sample.")
|
||||
|
||||
content = content.replace(IMAGE_PLACEHOLDER, "", 1)
|
||||
|
||||
new_messages.append({"role": message["role"], "content": content})
|
||||
|
||||
return new_messages
|
||||
|
||||
def process_token_ids(
|
||||
self,
|
||||
input_ids: List[int],
|
||||
labels: Optional[List[int]],
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> Tuple[List[int], Optional[List[int]]]:
|
||||
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
|
||||
image_seq_length: int = getattr(image_processor, "image_seq_length")
|
||||
image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
|
||||
input_ids = [image_token_id] * image_seq_length + input_ids
|
||||
if labels is not None:
|
||||
labels = [IGNORE_INDEX] * image_seq_length + labels
|
||||
|
||||
return input_ids, labels
|
||||
|
||||
def get_mm_inputs(
|
||||
self,
|
||||
images: Sequence["ImageObject"],
|
||||
feature_seqlens: Dict[str, int],
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> Dict[str, Any]:
|
||||
mm_inputs = {"pixel_values": get_pixel_values(images, processor)}
|
||||
for feature_name, feature_length in feature_seqlens.items():
|
||||
mm_inputs[feature_name] = get_paligemma_token_type_ids(feature_length, processor)
|
||||
|
||||
return mm_inputs
|
||||
|
||||
def process_model_inputs(
|
||||
self,
|
||||
model_inputs: Dict[str, List[Any]],
|
||||
images: Sequence["ImageObject"],
|
||||
feature_seqlens: Dict[str, int],
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> None:
|
||||
mm_inputs = self.get_mm_inputs(images, feature_seqlens, processor)
|
||||
model_inputs["pixel_values"].append(mm_inputs["pixel_values"][0])
|
||||
for feature_name in feature_seqlens.keys():
|
||||
model_inputs[feature_name].append(mm_inputs[feature_name][0])
|
||||
|
||||
|
||||
class Qwen2vlPlugin(BasePlugin):
|
||||
def process_messages(
|
||||
self,
|
||||
messages: Sequence[Dict[str, str]],
|
||||
images: Sequence["ImageObject"],
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> List[Dict[str, str]]:
|
||||
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
|
||||
merge_length: int = getattr(image_processor, "merge_size") ** 2
|
||||
if len(images) > 0:
|
||||
image_grid_thw = get_qwen2vl_image_inputs(images, processor)["image_grid_thw"]
|
||||
|
||||
index = 0
|
||||
new_messages = []
|
||||
for message in messages:
|
||||
content = message["content"]
|
||||
while IMAGE_PLACEHOLDER in content:
|
||||
content = content.replace(
|
||||
IMAGE_PLACEHOLDER,
|
||||
"<|vision_start|>{}<|vision_end|>".format(
|
||||
self.image_token * (image_grid_thw[index].prod() // merge_length)
|
||||
),
|
||||
1,
|
||||
)
|
||||
index += 1
|
||||
|
||||
new_messages.append({"role": message["role"], "content": content})
|
||||
|
||||
return new_messages
|
||||
|
||||
def get_mm_inputs(
|
||||
self,
|
||||
images: Sequence["ImageObject"],
|
||||
feature_seqlens: Dict[str, int],
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> Dict[str, Any]:
|
||||
return get_qwen2vl_image_inputs(images, processor)
|
||||
|
||||
def process_model_inputs(
|
||||
self,
|
||||
model_inputs: Dict[str, List[Any]],
|
||||
images: Sequence["ImageObject"],
|
||||
feature_seqlens: Dict[str, int],
|
||||
processor: Optional["ProcessorMixin"],
|
||||
) -> None:
|
||||
mm_inputs = self.get_mm_inputs(images, feature_seqlens, processor)
|
||||
model_inputs["pixel_values"].append(mm_inputs["pixel_values"])
|
||||
model_inputs["image_grid_thw"].append(mm_inputs["image_grid_thw"])
|
||||
|
||||
|
||||
PLUGINS = {
|
||||
"llava": LlavaPlugin,
|
||||
"paligemma": PaliGemmaPlugin,
|
||||
"qwen2_vl": Qwen2vlPlugin,
|
||||
}
|
||||
|
||||
|
||||
def get_mm_plugin(name: str, image_token: str) -> "BasePlugin":
|
||||
if name not in PLUGINS:
|
||||
raise ValueError("{} not found.".format(name))
|
||||
|
||||
return PLUGINS[name](image_token)
|
||||
Reference in New Issue
Block a user