refactor mm training

Former-commit-id: 179c0558699e287cbf38a2d73bff47e86d589c5a
This commit is contained in:
hiyouga
2024-08-30 02:14:31 +08:00
parent 77c2c7076b
commit c62a6ca59d
29 changed files with 499 additions and 312 deletions

View File

@@ -33,6 +33,7 @@ llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```bash
llamafactory-cli train examples/train_lora/llava1_5_lora_sft.yaml
llamafactory-cli train examples/train_lora/qwen2vl_lora_sft.yaml
```
#### Reward Modeling

View File

@@ -33,6 +33,7 @@ llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```bash
llamafactory-cli train examples/train_lora/llava1_5_lora_sft.yaml
llamafactory-cli train examples/train_lora/qwen2vl_lora_sft.yaml
```
#### 奖励模型训练

View File

@@ -1,40 +0,0 @@
### model
model_name_or_path: qwen2-vl-hf/qwen2-vl-7b-hf
visual_inputs: true
### method
stage: sft
do_train: true
finetuning_type: full
deepspeed: examples/deepspeed/ds_z3_config.json
### dataset
dataset: qwen2vl_demo
template: qwen2vl
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/qwen2-vl-7b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 1
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@@ -1,5 +1,5 @@
### model
model_name_or_path: qwen2-vl-hf/qwen2-vl-7b-hf
model_name_or_path: Qwen/Qwen2-VL-7B-Instruct
visual_inputs: true
### method
@@ -9,23 +9,23 @@ finetuning_type: lora
lora_target: all
### dataset
dataset: qwen2vl_demo
template: qwen2vl
dataset: mllm_demo
template: qwen2_vl
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/qwen2-vl-7b/lora/sft
output_dir: saves/qwen2_vl-7b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 2
gradient_accumulation_steps: 1
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine