modify style
Former-commit-id: 54b713d0c4ffdfc6a7faeb14471b58bb1cd8acf5
This commit is contained in:
@@ -15,33 +15,23 @@ class ModelArguments:
|
||||
)
|
||||
adapter_name_or_path: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "Path to the adapter weight or identifier from huggingface.co/models."
|
||||
},
|
||||
metadata={"help": "Path to the adapter weight or identifier from huggingface.co/models."},
|
||||
)
|
||||
cache_dir: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."
|
||||
},
|
||||
metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."},
|
||||
)
|
||||
use_fast_tokenizer: bool = field(
|
||||
default=True,
|
||||
metadata={
|
||||
"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."
|
||||
},
|
||||
metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."},
|
||||
)
|
||||
resize_vocab: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help": "Whether or not to resize the tokenizer vocab and the embedding layers."
|
||||
},
|
||||
metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."},
|
||||
)
|
||||
split_special_tokens: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help": "Whether or not the special tokens should be split during the tokenization process."
|
||||
},
|
||||
metadata={"help": "Whether or not the special tokens should be split during the tokenization process."},
|
||||
)
|
||||
new_special_tokens: Optional[str] = field(
|
||||
default=None,
|
||||
@@ -49,9 +39,7 @@ class ModelArguments:
|
||||
)
|
||||
model_revision: str = field(
|
||||
default="main",
|
||||
metadata={
|
||||
"help": "The specific model version to use (can be a branch name, tag name or commit id)."
|
||||
},
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
low_cpu_mem_usage: bool = field(
|
||||
default=True,
|
||||
@@ -59,9 +47,7 @@ class ModelArguments:
|
||||
)
|
||||
quantization_bit: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The number of bits to quantize the model using bitsandbytes."
|
||||
},
|
||||
metadata={"help": "The number of bits to quantize the model using bitsandbytes."},
|
||||
)
|
||||
quantization_type: Literal["fp4", "nf4"] = field(
|
||||
default="nf4",
|
||||
@@ -69,21 +55,15 @@ class ModelArguments:
|
||||
)
|
||||
double_quantization: bool = field(
|
||||
default=True,
|
||||
metadata={
|
||||
"help": "Whether or not to use double quantization in int4 training."
|
||||
},
|
||||
metadata={"help": "Whether or not to use double quantization in int4 training."},
|
||||
)
|
||||
quantization_device_map: Optional[Literal["auto"]] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "Device map used to infer the 4-bit quantized model, needs bitsandbytes>=0.43.0."
|
||||
},
|
||||
metadata={"help": "Device map used to infer the 4-bit quantized model, needs bitsandbytes>=0.43.0."},
|
||||
)
|
||||
rope_scaling: Optional[Literal["linear", "dynamic"]] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "Which scaling strategy should be adopted for the RoPE embeddings."
|
||||
},
|
||||
metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."},
|
||||
)
|
||||
flash_attn: Literal["off", "sdpa", "fa2", "auto"] = field(
|
||||
default="auto",
|
||||
@@ -91,27 +71,19 @@ class ModelArguments:
|
||||
)
|
||||
shift_attn: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."
|
||||
},
|
||||
metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."},
|
||||
)
|
||||
mixture_of_depths: Optional[Literal["convert", "load"]] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "Convert the model to mixture-of-depths (MoD) or load the MoD model."
|
||||
},
|
||||
metadata={"help": "Convert the model to mixture-of-depths (MoD) or load the MoD model."},
|
||||
)
|
||||
use_unsloth: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help": "Whether or not to use unsloth's optimization for the LoRA training."
|
||||
},
|
||||
metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."},
|
||||
)
|
||||
moe_aux_loss_coef: Optional[float] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "Coefficient of the auxiliary router loss in mixture-of-experts model."
|
||||
},
|
||||
metadata={"help": "Coefficient of the auxiliary router loss in mixture-of-experts model."},
|
||||
)
|
||||
disable_gradient_checkpointing: bool = field(
|
||||
default=False,
|
||||
@@ -135,9 +107,7 @@ class ModelArguments:
|
||||
)
|
||||
vllm_gpu_util: float = field(
|
||||
default=0.9,
|
||||
metadata={
|
||||
"help": "The fraction of GPU memory in (0,1) to be used for the vLLM engine."
|
||||
},
|
||||
metadata={"help": "The fraction of GPU memory in (0,1) to be used for the vLLM engine."},
|
||||
)
|
||||
vllm_enforce_eager: bool = field(
|
||||
default=False,
|
||||
@@ -177,9 +147,7 @@ class ModelArguments:
|
||||
)
|
||||
export_quantization_dataset: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "Path to the dataset or dataset name to use in quantizing the exported model."
|
||||
},
|
||||
metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."},
|
||||
)
|
||||
export_quantization_nsamples: int = field(
|
||||
default=128,
|
||||
@@ -187,27 +155,19 @@ class ModelArguments:
|
||||
)
|
||||
export_quantization_maxlen: int = field(
|
||||
default=1024,
|
||||
metadata={
|
||||
"help": "The maximum length of the model inputs used for quantization."
|
||||
},
|
||||
metadata={"help": "The maximum length of the model inputs used for quantization."},
|
||||
)
|
||||
export_legacy_format: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help": "Whether or not to save the `.bin` files instead of `.safetensors`."
|
||||
},
|
||||
metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."},
|
||||
)
|
||||
export_hub_model_id: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The name of the repository if push the model to the Hugging Face hub."
|
||||
},
|
||||
metadata={"help": "The name of the repository if push the model to the Hugging Face hub."},
|
||||
)
|
||||
print_param_status: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help": "For debugging purposes, print the status of the parameters in the model."
|
||||
},
|
||||
metadata={"help": "For debugging purposes, print the status of the parameters in the model."},
|
||||
)
|
||||
use_mllm: bool = field(
|
||||
default=False,
|
||||
@@ -220,21 +180,13 @@ class ModelArguments:
|
||||
self.model_max_length = None
|
||||
|
||||
if self.split_special_tokens and self.use_fast_tokenizer:
|
||||
raise ValueError(
|
||||
"`split_special_tokens` is only supported for slow tokenizers."
|
||||
)
|
||||
raise ValueError("`split_special_tokens` is only supported for slow tokenizers.")
|
||||
|
||||
if (
|
||||
self.adapter_name_or_path is not None
|
||||
): # support merging multiple lora weights
|
||||
self.adapter_name_or_path = [
|
||||
path.strip() for path in self.adapter_name_or_path.split(",")
|
||||
]
|
||||
if self.adapter_name_or_path is not None: # support merging multiple lora weights
|
||||
self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")]
|
||||
|
||||
if self.new_special_tokens is not None: # support multiple special tokens
|
||||
self.new_special_tokens = [
|
||||
token.strip() for token in self.new_special_tokens.split(",")
|
||||
]
|
||||
self.new_special_tokens = [token.strip() for token in self.new_special_tokens.split(",")]
|
||||
|
||||
assert self.quantization_bit in [
|
||||
None,
|
||||
@@ -249,10 +201,7 @@ class ModelArguments:
|
||||
2,
|
||||
], "We only accept 2/3/4/8-bit quantization."
|
||||
|
||||
if (
|
||||
self.export_quantization_bit is not None
|
||||
and self.export_quantization_dataset is None
|
||||
):
|
||||
if self.export_quantization_bit is not None and self.export_quantization_dataset is None:
|
||||
raise ValueError("Quantization dataset is necessary for exporting.")
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
|
||||
Reference in New Issue
Block a user