[misc] fix packing and eval plot (#7623)

This commit is contained in:
hoshi-hiyouga
2025-04-07 18:20:57 +08:00
committed by GitHub
parent 5115dc8c7f
commit c3c0efbaa0
70 changed files with 288 additions and 194 deletions

View File

@@ -15,6 +15,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/qwen2-1_5b/full/sft
@@ -22,6 +23,8 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -20,6 +20,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/full/sft
@@ -27,6 +28,8 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -20,6 +20,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/full/sft
@@ -27,6 +28,8 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -17,6 +17,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/sft
@@ -24,6 +25,8 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -19,6 +19,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/full/sft
@@ -26,6 +27,8 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -17,6 +17,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b-pro/freeze/sft
@@ -24,6 +25,8 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -17,6 +17,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/sft
@@ -24,6 +25,8 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -15,6 +15,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b-mod/full/sft
@@ -22,6 +23,8 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -18,10 +18,12 @@ cutoff_len: 2048
max_samples: 50
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/predict
overwrite_output_dir: true
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### eval
per_device_eval_batch_size: 1

View File

@@ -19,6 +19,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/sft
@@ -26,6 +27,8 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -24,6 +24,7 @@ save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -8,10 +8,10 @@ trust_remote_code: true
stage: sft
do_train: true
finetuning_type: full
freeze_vision_tower: true # choices: [true, false]
freeze_multi_modal_projector: true # choices: [true, false]
freeze_language_model: false # choices: [true, false]
deepspeed: examples/deepspeed/ds_z3_config.json # choices: [ds_z0_config.json, ds_z2_config.json, ds_z3_config.json]
freeze_vision_tower: true
freeze_multi_modal_projector: true
freeze_language_model: false
deepspeed: examples/deepspeed/ds_z3_config.json
### dataset
dataset: mllm_demo,identity,alpaca_en_demo
@@ -29,6 +29,7 @@ save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -27,6 +27,7 @@ save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -17,6 +17,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/kto
@@ -24,6 +25,7 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -17,6 +17,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/ppo
@@ -24,6 +25,7 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -24,6 +24,7 @@ save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -25,6 +25,7 @@ save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -25,6 +25,7 @@ save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -26,6 +26,7 @@ save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -26,6 +26,7 @@ save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### ray
ray_run_name: llama3_8b_sft_lora

View File

@@ -28,10 +28,11 @@ save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
gradient_accumulation_steps: 2
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine

View File

@@ -25,6 +25,7 @@ save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -29,6 +29,7 @@ save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -27,6 +27,7 @@ save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -16,6 +16,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/sft
@@ -23,6 +24,8 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -16,6 +16,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/sft
@@ -23,6 +24,8 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -1,7 +1,7 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
quantization_bit: 4
quantization_method: bitsandbytes
quantization_method: bnb
double_quantization: false
trust_remote_code: true
@@ -19,6 +19,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/sft
@@ -26,6 +27,8 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -16,6 +16,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/sft
@@ -23,6 +24,8 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1

View File

@@ -1,7 +1,7 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
quantization_bit: 4
quantization_method: bitsandbytes # choices: [bitsandbytes (4/8), hqq (2/3/4/5/6/8), eetq (8)]
quantization_bit: 4 # choices: [8 (bnb/hqq/eetq), 4 (bnb/hqq), 3 (hqq), 2 (hqq)]
quantization_method: bnb # choices: [bnb, hqq, eetq]
trust_remote_code: true
### method
@@ -18,6 +18,7 @@ cutoff_len: 2048
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
dataloader_num_workers: 4
### output
output_dir: saves/llama3-8b/lora/sft
@@ -25,6 +26,8 @@ logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
save_only_model: false
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
### train
per_device_train_batch_size: 1