refactor data preprocessing, fix mllm rlhf
Former-commit-id: 53ff2dd24f9121ea30c95063bb72e49a9b31e980
This commit is contained in:
0
src/llamafactory/data/processors/__init__.py
Normal file
0
src/llamafactory/data/processors/__init__.py
Normal file
110
src/llamafactory/data/processors/feedback.py
Normal file
110
src/llamafactory/data/processors/feedback.py
Normal file
@@ -0,0 +1,110 @@
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX, IMAGE_TOKEN
|
||||
from ...extras.logging import get_logger
|
||||
from .mm_utils import get_paligemma_token_type_ids, get_pixel_values
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import ProcessorMixin
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
from ...hparams import DataArguments
|
||||
from ..template import Template
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def preprocess_feedback_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# create unrelated input-output pairs for estimating the KL term by flipping the matched pairs
|
||||
kl_response = examples["response"][::-1]
|
||||
model_inputs = {
|
||||
"input_ids": [],
|
||||
"attention_mask": [],
|
||||
"labels": [],
|
||||
"kl_input_ids": [],
|
||||
"kl_attention_mask": [],
|
||||
"kl_labels": [],
|
||||
"kto_tags": [],
|
||||
}
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"] = []
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["token_type_ids"] = []
|
||||
model_inputs["kl_token_type_ids"] = []
|
||||
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) < 2:
|
||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
continue
|
||||
|
||||
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
||||
examples["prompt"][i][0]["content"] = IMAGE_TOKEN + examples["prompt"][i][0]["content"]
|
||||
|
||||
if examples["response"][i][0]["content"]: # desired example
|
||||
kto_tag = True
|
||||
messages = examples["prompt"][i] + [examples["response"][i][0]]
|
||||
else: # undesired example
|
||||
kto_tag = False
|
||||
messages = examples["prompt"][i] + [examples["response"][i][1]]
|
||||
|
||||
if kl_response[i][0]["content"]:
|
||||
kl_messages = examples["prompt"][i] + [kl_response[i][0]]
|
||||
else:
|
||||
kl_messages = examples["prompt"][i] + [kl_response[i][1]]
|
||||
|
||||
prompt_ids, response_ids = template.encode_oneturn(
|
||||
tokenizer,
|
||||
messages,
|
||||
examples["system"][i],
|
||||
examples["tools"][i],
|
||||
data_args.cutoff_len,
|
||||
data_args.reserved_label_len,
|
||||
)
|
||||
_, kl_response_ids = template.encode_oneturn(
|
||||
tokenizer,
|
||||
kl_messages,
|
||||
examples["system"][i],
|
||||
examples["tools"][i],
|
||||
data_args.cutoff_len,
|
||||
data_args.reserved_label_len,
|
||||
)
|
||||
|
||||
if template.efficient_eos:
|
||||
response_ids += [tokenizer.eos_token_id]
|
||||
kl_response_ids += [tokenizer.eos_token_id]
|
||||
|
||||
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
|
||||
image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
|
||||
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
|
||||
|
||||
input_ids = prompt_ids + response_ids
|
||||
labels = [IGNORE_INDEX] * len(prompt_ids) + response_ids
|
||||
kl_input_ids = prompt_ids + kl_response_ids
|
||||
kl_labels = [IGNORE_INDEX] * len(prompt_ids) + kl_response_ids
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
model_inputs["labels"].append(labels)
|
||||
model_inputs["kl_input_ids"].append(kl_input_ids)
|
||||
model_inputs["kl_attention_mask"].append([1] * len(kl_input_ids))
|
||||
model_inputs["kl_labels"].append(kl_labels)
|
||||
model_inputs["kto_tags"].append(kto_tag)
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor))
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor))
|
||||
model_inputs["kl_token_type_ids"].append(get_paligemma_token_type_ids(len(kl_input_ids), processor))
|
||||
|
||||
desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag])
|
||||
undesirable_num = len(model_inputs["kto_tags"]) - desirable_num
|
||||
if desirable_num == 0 or undesirable_num == 0:
|
||||
logger.warning("Your dataset only has one preference type.")
|
||||
|
||||
return model_inputs
|
||||
27
src/llamafactory/data/processors/mm_utils.py
Normal file
27
src/llamafactory/data/processors/mm_utils.py
Normal file
@@ -0,0 +1,27 @@
|
||||
from typing import TYPE_CHECKING, List, Sequence
|
||||
|
||||
from ...extras.packages import is_pillow_available
|
||||
|
||||
|
||||
if is_pillow_available():
|
||||
from PIL import Image
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from numpy.typing import NDArray
|
||||
from PIL.Image import Image as ImageObject
|
||||
from transformers import ProcessorMixin
|
||||
from transformers.image_processing_utils import BaseImageProcessor
|
||||
|
||||
|
||||
def get_pixel_values(images: Sequence["ImageObject"], processor: "ProcessorMixin") -> "NDArray":
|
||||
# process visual inputs (currently only supports a single image)
|
||||
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
|
||||
image = images[0] if len(images) != 0 else Image.new("RGB", (100, 100), (255, 255, 255))
|
||||
return image_processor(image, return_tensors="pt")["pixel_values"][0] # shape (C, H, W)
|
||||
|
||||
|
||||
def get_paligemma_token_type_ids(input_len: int, processor: "ProcessorMixin") -> List[int]:
|
||||
# get paligemma token type ids for computing loss
|
||||
image_seq_length = getattr(processor, "image_seq_length")
|
||||
return [0] * image_seq_length + [1] * (input_len - image_seq_length)
|
||||
109
src/llamafactory/data/processors/pairwise.py
Normal file
109
src/llamafactory/data/processors/pairwise.py
Normal file
@@ -0,0 +1,109 @@
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX, IMAGE_TOKEN
|
||||
from ...extras.logging import get_logger
|
||||
from .mm_utils import get_paligemma_token_type_ids, get_pixel_values
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import ProcessorMixin
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
from ...hparams import DataArguments
|
||||
from ..template import Template
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def preprocess_pairwise_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build input pairs with format `<bos> X`, `Y1 <eos>` and `Y2 <eos>`
|
||||
model_inputs = {
|
||||
"chosen_input_ids": [],
|
||||
"chosen_attention_mask": [],
|
||||
"chosen_labels": [],
|
||||
"rejected_input_ids": [],
|
||||
"rejected_attention_mask": [],
|
||||
"rejected_labels": [],
|
||||
}
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"] = []
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["chosen_token_type_ids"] = []
|
||||
model_inputs["rejected_token_type_ids"] = []
|
||||
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) < 2:
|
||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
continue
|
||||
|
||||
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
||||
examples["prompt"][i][0]["content"] = IMAGE_TOKEN + examples["prompt"][i][0]["content"]
|
||||
|
||||
chosen_messages = examples["prompt"][i] + [examples["response"][i][0]]
|
||||
rejected_messages = examples["prompt"][i] + [examples["response"][i][1]]
|
||||
prompt_ids, chosen_ids = template.encode_oneturn(
|
||||
tokenizer,
|
||||
chosen_messages,
|
||||
examples["system"][i],
|
||||
examples["tools"][i],
|
||||
data_args.cutoff_len,
|
||||
data_args.reserved_label_len,
|
||||
)
|
||||
_, rejected_ids = template.encode_oneturn(
|
||||
tokenizer,
|
||||
rejected_messages,
|
||||
examples["system"][i],
|
||||
examples["tools"][i],
|
||||
data_args.cutoff_len,
|
||||
data_args.reserved_label_len,
|
||||
)
|
||||
|
||||
if template.efficient_eos:
|
||||
chosen_ids += [tokenizer.eos_token_id]
|
||||
rejected_ids += [tokenizer.eos_token_id]
|
||||
|
||||
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
|
||||
image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
|
||||
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
|
||||
|
||||
chosen_input_ids = prompt_ids + chosen_ids
|
||||
chosen_labels = [IGNORE_INDEX] * len(prompt_ids) + chosen_ids
|
||||
rejected_input_ids = prompt_ids + rejected_ids
|
||||
rejected_labels = [IGNORE_INDEX] * len(prompt_ids) + rejected_ids
|
||||
model_inputs["chosen_input_ids"].append(chosen_input_ids)
|
||||
model_inputs["chosen_attention_mask"].append([1] * len(chosen_input_ids))
|
||||
model_inputs["chosen_labels"].append(chosen_labels)
|
||||
model_inputs["rejected_input_ids"].append(rejected_input_ids)
|
||||
model_inputs["rejected_attention_mask"].append([1] * len(rejected_input_ids))
|
||||
model_inputs["rejected_labels"].append(rejected_labels)
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor))
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["chosen_token_type_ids"].append(
|
||||
get_paligemma_token_type_ids(len(chosen_input_ids), processor)
|
||||
)
|
||||
model_inputs["rejected_token_type_ids"].append(
|
||||
get_paligemma_token_type_ids(len(rejected_input_ids), processor)
|
||||
)
|
||||
|
||||
return model_inputs
|
||||
|
||||
|
||||
def print_pairwise_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
|
||||
valid_chosen_labels = list(filter(lambda x: x != IGNORE_INDEX, example["chosen_labels"]))
|
||||
valid_rejected_labels = list(filter(lambda x: x != IGNORE_INDEX, example["rejected_labels"]))
|
||||
print("chosen_input_ids:\n{}".format(example["chosen_input_ids"]))
|
||||
print("chosen_inputs:\n{}".format(tokenizer.decode(example["chosen_input_ids"], skip_special_tokens=False)))
|
||||
print("chosen_label_ids:\n{}".format(example["chosen_labels"]))
|
||||
print("chosen_labels:\n{}".format(tokenizer.decode(valid_chosen_labels, skip_special_tokens=False)))
|
||||
print("rejected_input_ids:\n{}".format(example["rejected_input_ids"]))
|
||||
print("rejected_inputs:\n{}".format(tokenizer.decode(example["rejected_input_ids"], skip_special_tokens=False)))
|
||||
print("rejected_label_ids:\n{}".format(example["rejected_labels"]))
|
||||
print("rejected_labels:\n{}".format(tokenizer.decode(valid_rejected_labels, skip_special_tokens=False)))
|
||||
36
src/llamafactory/data/processors/pretrain.py
Normal file
36
src/llamafactory/data/processors/pretrain.py
Normal file
@@ -0,0 +1,36 @@
|
||||
from itertools import chain
|
||||
from typing import TYPE_CHECKING, Any, Dict, List
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
from ...hparams import DataArguments
|
||||
|
||||
|
||||
def preprocess_pretrain_dataset(
|
||||
examples: Dict[str, List[Any]], tokenizer: "PreTrainedTokenizer", data_args: "DataArguments"
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build grouped texts with format `X1 X2 X3 ...` if packing is enabled
|
||||
text_examples = [messages[0]["content"] + tokenizer.eos_token for messages in examples["prompt"]]
|
||||
|
||||
if not data_args.packing:
|
||||
if data_args.template == "gemma":
|
||||
text_examples = [tokenizer.bos_token + example for example in text_examples]
|
||||
|
||||
result = tokenizer(text_examples, add_special_tokens=False, max_length=data_args.cutoff_len)
|
||||
else:
|
||||
tokenized_examples = tokenizer(text_examples, add_special_tokens=False)
|
||||
concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()}
|
||||
total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]])
|
||||
block_size = data_args.cutoff_len
|
||||
total_length = (total_length // block_size) * block_size
|
||||
result = {
|
||||
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
||||
for k, t in concatenated_examples.items()
|
||||
}
|
||||
if data_args.template == "gemma":
|
||||
for i in range(len(result["input_ids"])):
|
||||
result["input_ids"][i][0] = tokenizer.bos_token_id
|
||||
|
||||
return result
|
||||
137
src/llamafactory/data/processors/supervised.py
Normal file
137
src/llamafactory/data/processors/supervised.py
Normal file
@@ -0,0 +1,137 @@
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX, IMAGE_TOKEN
|
||||
from ...extras.logging import get_logger
|
||||
from .mm_utils import get_paligemma_token_type_ids, get_pixel_values
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import ProcessorMixin
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
from ...hparams import DataArguments
|
||||
from ..template import Template
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def preprocess_supervised_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build inputs with format `<bos> X Y <eos>` and labels with format `<ignore> ... <ignore> Y <eos>`
|
||||
# for multiturn examples, we only mask the prompt part in each prompt-response pair.
|
||||
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"] = []
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["token_type_ids"] = []
|
||||
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1:
|
||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
continue
|
||||
|
||||
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
||||
examples["prompt"][i][0]["content"] = IMAGE_TOKEN + examples["prompt"][i][0]["content"]
|
||||
|
||||
messages = examples["prompt"][i] + examples["response"][i]
|
||||
input_ids, labels = [], []
|
||||
|
||||
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
|
||||
image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
|
||||
input_ids += [image_token_id] * getattr(processor, "image_seq_length")
|
||||
labels += [IGNORE_INDEX] * getattr(processor, "image_seq_length")
|
||||
|
||||
for turn_idx, (source_ids, target_ids) in enumerate(
|
||||
template.encode_multiturn(
|
||||
tokenizer,
|
||||
messages,
|
||||
examples["system"][i],
|
||||
examples["tools"][i],
|
||||
data_args.cutoff_len,
|
||||
data_args.reserved_label_len,
|
||||
)
|
||||
):
|
||||
if data_args.train_on_prompt:
|
||||
source_mask = source_ids
|
||||
elif turn_idx != 0 and template.efficient_eos:
|
||||
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
|
||||
else:
|
||||
source_mask = [IGNORE_INDEX] * len(source_ids)
|
||||
|
||||
input_ids += source_ids + target_ids
|
||||
labels += source_mask + target_ids
|
||||
|
||||
if template.efficient_eos:
|
||||
input_ids += [tokenizer.eos_token_id]
|
||||
labels += [tokenizer.eos_token_id]
|
||||
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
model_inputs["labels"].append(labels)
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor))
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor))
|
||||
|
||||
return model_inputs
|
||||
|
||||
|
||||
def preprocess_packed_supervised_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
|
||||
# and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>`
|
||||
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
|
||||
input_ids, labels = [], []
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1:
|
||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
continue
|
||||
|
||||
messages = examples["prompt"][i] + examples["response"][i]
|
||||
for source_ids, target_ids in template.encode_multiturn(
|
||||
tokenizer, messages, examples["system"][i], examples["tools"][i]
|
||||
):
|
||||
if data_args.train_on_prompt:
|
||||
source_mask = source_ids
|
||||
elif len(input_ids) != 0 and template.efficient_eos:
|
||||
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
|
||||
else:
|
||||
source_mask = [IGNORE_INDEX] * len(source_ids)
|
||||
|
||||
input_ids += source_ids + target_ids
|
||||
labels += source_mask + target_ids
|
||||
|
||||
if template.efficient_eos:
|
||||
input_ids += [tokenizer.eos_token_id]
|
||||
labels += [tokenizer.eos_token_id]
|
||||
|
||||
total_length = len(input_ids)
|
||||
block_size = data_args.cutoff_len
|
||||
# we drop the small remainder, and if the total_length < block_size, we exclude this batch
|
||||
total_length = (total_length // block_size) * block_size
|
||||
# split by chunks of cutoff_len
|
||||
for i in range(0, total_length, block_size):
|
||||
if not all(label == IGNORE_INDEX for label in labels[i : i + block_size]):
|
||||
model_inputs["input_ids"].append(input_ids[i : i + block_size])
|
||||
model_inputs["attention_mask"].append([1] * block_size)
|
||||
model_inputs["labels"].append(labels[i : i + block_size])
|
||||
|
||||
return model_inputs
|
||||
|
||||
|
||||
def print_supervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
|
||||
valid_labels = list(filter(lambda x: x != IGNORE_INDEX, example["labels"]))
|
||||
print("input_ids:\n{}".format(example["input_ids"]))
|
||||
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
|
||||
print("label_ids:\n{}".format(example["labels"]))
|
||||
print("labels:\n{}".format(tokenizer.decode(valid_labels, skip_special_tokens=False)))
|
||||
76
src/llamafactory/data/processors/unsupervised.py
Normal file
76
src/llamafactory/data/processors/unsupervised.py
Normal file
@@ -0,0 +1,76 @@
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
||||
|
||||
from ...extras.constants import IMAGE_TOKEN
|
||||
from ...extras.logging import get_logger
|
||||
from ..utils import Role
|
||||
from .mm_utils import get_paligemma_token_type_ids, get_pixel_values
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import ProcessorMixin
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
from ...hparams import DataArguments
|
||||
from ..template import Template
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def preprocess_unsupervised_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build inputs with format `<bos> X` and labels with format `Y <eos>`
|
||||
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"] = []
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["token_type_ids"] = []
|
||||
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) % 2 != 1:
|
||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
continue
|
||||
|
||||
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
||||
examples["prompt"][i][0]["content"] = IMAGE_TOKEN + examples["prompt"][i][0]["content"]
|
||||
|
||||
if len(examples["response"][i]) == 1:
|
||||
messages = examples["prompt"][i] + examples["response"][i]
|
||||
else:
|
||||
messages = examples["prompt"][i] + [{"role": Role.ASSISTANT.value, "content": ""}]
|
||||
|
||||
input_ids, labels = template.encode_oneturn(
|
||||
tokenizer,
|
||||
messages,
|
||||
examples["system"][i],
|
||||
examples["tools"][i],
|
||||
data_args.cutoff_len,
|
||||
data_args.reserved_label_len,
|
||||
)
|
||||
|
||||
if template.efficient_eos:
|
||||
labels += [tokenizer.eos_token_id]
|
||||
|
||||
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
|
||||
image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
|
||||
input_ids = [image_token_id] * getattr(processor, "image_seq_length") + input_ids
|
||||
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
model_inputs["labels"].append(labels)
|
||||
if processor is not None:
|
||||
model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor))
|
||||
if hasattr(processor, "image_seq_length"): # paligemma models
|
||||
model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor))
|
||||
|
||||
return model_inputs
|
||||
|
||||
|
||||
def print_unsupervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
|
||||
print("input_ids:\n{}".format(example["input_ids"]))
|
||||
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
|
||||
Reference in New Issue
Block a user