support lora for llama pro
Former-commit-id: f74c78ba95f0545aae89e603e466f494705ad024
This commit is contained in:
@@ -108,6 +108,18 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
|
||||
)
|
||||
)
|
||||
|
||||
with gr.Accordion(label="Freeze config", open=False) as freeze_tab:
|
||||
with gr.Row():
|
||||
num_layer_trainable = gr.Slider(value=3, minimum=1, maximum=128, step=1, scale=2)
|
||||
name_module_trainable = gr.Textbox(scale=3)
|
||||
|
||||
input_elems.update({num_layer_trainable, name_module_trainable})
|
||||
elem_dict.update(
|
||||
dict(
|
||||
freeze_tab=freeze_tab, num_layer_trainable=num_layer_trainable, name_module_trainable=name_module_trainable
|
||||
)
|
||||
)
|
||||
|
||||
with gr.Accordion(label="LoRA config", open=False) as lora_tab:
|
||||
with gr.Row():
|
||||
lora_rank = gr.Slider(value=8, minimum=1, maximum=1024, step=1)
|
||||
|
||||
Reference in New Issue
Block a user