fix bug in latest gradio

Former-commit-id: 44a962862b4a74e50ef5786c8d5719faaa65f63f
This commit is contained in:
hiyouga
2024-04-04 00:55:31 +08:00
parent 43d134ba29
commit b1986a06b9
8 changed files with 111 additions and 204 deletions

View File

@@ -6,7 +6,6 @@ from transformers.trainer_utils import SchedulerType
from ...extras.constants import TRAINING_STAGES
from ..common import DEFAULT_DATA_DIR, autoset_packing, list_adapters, list_dataset
from ..components.data import create_preview_box
from ..utils import gen_plot
if TYPE_CHECKING:
@@ -24,7 +23,7 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
choices=list(TRAINING_STAGES.keys()), value=list(TRAINING_STAGES.keys())[0], scale=1
)
dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=1)
dataset = gr.Dropdown(multiselect=True, scale=2, allow_custom_value=True)
dataset = gr.Dropdown(multiselect=True, scale=4, allow_custom_value=True)
preview_elems = create_preview_box(dataset_dir, dataset)
input_elems.update({training_stage, dataset_dir, dataset})
@@ -121,8 +120,8 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
with gr.Accordion(open=False) as freeze_tab:
with gr.Row():
num_layer_trainable = gr.Slider(value=3, minimum=1, maximum=128, step=1, scale=2)
name_module_trainable = gr.Textbox(value="all", scale=3)
num_layer_trainable = gr.Slider(value=3, minimum=1, maximum=128, step=1)
name_module_trainable = gr.Textbox(value="all")
input_elems.update({num_layer_trainable, name_module_trainable})
elem_dict.update(
@@ -140,8 +139,10 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
create_new_adapter = gr.Checkbox()
with gr.Row():
use_rslora = gr.Checkbox(scale=1)
use_dora = gr.Checkbox(scale=1)
with gr.Column(scale=1):
use_rslora = gr.Checkbox()
use_dora = gr.Checkbox()
lora_target = gr.Textbox(scale=2)
additional_target = gr.Textbox(scale=2)
@@ -175,10 +176,10 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
with gr.Accordion(open=False) as rlhf_tab:
with gr.Row():
dpo_beta = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1)
dpo_ftx = gr.Slider(value=0, minimum=0, maximum=10, step=0.01, scale=1)
orpo_beta = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1)
reward_model = gr.Dropdown(multiselect=True, allow_custom_value=True, scale=2)
dpo_beta = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01)
dpo_ftx = gr.Slider(value=0, minimum=0, maximum=10, step=0.01)
orpo_beta = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01)
reward_model = gr.Dropdown(multiselect=True, allow_custom_value=True)
input_elems.update({dpo_beta, dpo_ftx, orpo_beta, reward_model})
elem_dict.update(
@@ -187,11 +188,11 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
with gr.Accordion(open=False) as galore_tab:
with gr.Row():
use_galore = gr.Checkbox(scale=1)
galore_rank = gr.Slider(value=16, minimum=1, maximum=1024, step=1, scale=2)
galore_update_interval = gr.Slider(value=200, minimum=1, maximum=1024, step=1, scale=2)
galore_scale = gr.Slider(value=0.25, minimum=0, maximum=1, step=0.01, scale=2)
galore_target = gr.Textbox(value="all", scale=3)
use_galore = gr.Checkbox()
galore_rank = gr.Slider(value=16, minimum=1, maximum=1024, step=1)
galore_update_interval = gr.Slider(value=200, minimum=1, maximum=1024, step=1)
galore_scale = gr.Slider(value=0.25, minimum=0, maximum=1, step=0.01)
galore_target = gr.Textbox(value="all")
input_elems.update({use_galore, galore_rank, galore_update_interval, galore_scale, galore_target})
elem_dict.update(
@@ -228,29 +229,6 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
with gr.Column(scale=1):
loss_viewer = gr.Plot()
input_elems.update({output_dir, config_path})
output_elems = [output_box, process_bar]
cmd_preview_btn.click(engine.runner.preview_train, input_elems, output_elems, concurrency_limit=None)
arg_save_btn.click(engine.runner.save_args, input_elems, output_elems, concurrency_limit=None)
arg_load_btn.click(
engine.runner.load_args,
[engine.manager.get_elem_by_id("top.lang"), config_path],
list(input_elems),
concurrency_limit=None,
)
start_btn.click(engine.runner.run_train, input_elems, output_elems)
stop_btn.click(engine.runner.set_abort)
resume_btn.change(engine.runner.monitor, outputs=output_elems, concurrency_limit=None)
dataset_dir.change(list_dataset, [dataset_dir, training_stage], [dataset], queue=False)
training_stage.change(list_dataset, [dataset_dir, training_stage], [dataset], queue=False).then(
list_adapters,
[engine.manager.get_elem_by_id("top.model_name"), engine.manager.get_elem_by_id("top.finetuning_type")],
[reward_model],
queue=False,
).then(autoset_packing, [training_stage], [packing], queue=False)
elem_dict.update(
dict(
cmd_preview_btn=cmd_preview_btn,
@@ -267,15 +245,27 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
)
)
output_box.change(
gen_plot,
[
engine.manager.get_elem_by_id("top.model_name"),
engine.manager.get_elem_by_id("top.finetuning_type"),
output_dir,
],
loss_viewer,
queue=False,
input_elems.update({output_dir, config_path})
output_elems = [output_box, process_bar, loss_viewer]
cmd_preview_btn.click(engine.runner.preview_train, input_elems, output_elems, concurrency_limit=None)
arg_save_btn.click(engine.runner.save_args, input_elems, output_elems, concurrency_limit=None)
arg_load_btn.click(
engine.runner.load_args,
[engine.manager.get_elem_by_id("top.lang"), config_path],
list(input_elems) + [output_box],
concurrency_limit=None,
)
start_btn.click(engine.runner.run_train, input_elems, output_elems)
stop_btn.click(engine.runner.set_abort)
resume_btn.change(engine.runner.monitor, outputs=output_elems, concurrency_limit=None)
dataset_dir.change(list_dataset, [dataset_dir, training_stage], [dataset], queue=False)
training_stage.change(list_dataset, [dataset_dir, training_stage], [dataset], queue=False).then(
list_adapters,
[engine.manager.get_elem_by_id("top.model_name"), engine.manager.get_elem_by_id("top.finetuning_type")],
[reward_model],
queue=False,
).then(autoset_packing, [training_stage], [packing], queue=False)
return elem_dict