simplify readme
Former-commit-id: 0da6ec2d516326fe9c7583ba71cd1778eb838178
This commit is contained in:
@@ -6,6 +6,7 @@ from datasets import load_dataset, load_from_disk
|
||||
|
||||
from ..extras.constants import FILEEXT2TYPE
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.misc import is_path_available
|
||||
from .aligner import align_dataset
|
||||
from .parser import get_dataset_list
|
||||
from .preprocess import get_preprocess_and_print_func
|
||||
@@ -122,11 +123,12 @@ def get_dataset(
|
||||
if data_args.train_on_prompt and template.efficient_eos:
|
||||
raise ValueError("Current template does not support `train_on_prompt`.")
|
||||
|
||||
# Load from cache
|
||||
if data_args.cache_path is not None:
|
||||
if os.path.exists(data_args.cache_path):
|
||||
# Load tokenized dataset
|
||||
if data_args.tokenized_path is not None:
|
||||
if not is_path_available(data_args.tokenized_path):
|
||||
logger.warning("Loading dataset from disk will ignore other data arguments.")
|
||||
dataset = load_from_disk(data_args.cache_path)
|
||||
dataset = load_from_disk(data_args.tokenized_path)
|
||||
logger.info("Loaded tokenized dataset from {}.".format(data_args.tokenized_path))
|
||||
if data_args.streaming:
|
||||
dataset = dataset.to_iterable_dataset()
|
||||
return dataset
|
||||
@@ -158,10 +160,13 @@ def get_dataset(
|
||||
|
||||
dataset = dataset.map(preprocess_func, batched=True, remove_columns=column_names, **kwargs)
|
||||
|
||||
if data_args.cache_path is not None and not os.path.exists(data_args.cache_path):
|
||||
if data_args.tokenized_path is not None:
|
||||
if training_args.should_save:
|
||||
dataset.save_to_disk(data_args.cache_path)
|
||||
logger.info("Dataset cache saved at {}.".format(data_args.cache_path))
|
||||
dataset.save_to_disk(data_args.tokenized_path)
|
||||
logger.info("Tokenized dataset saved at {}.".format(data_args.tokenized_path))
|
||||
logger.info("Please restart the training with `--tokenized_path {}`.".format(data_args.tokenized_path))
|
||||
|
||||
exit(0)
|
||||
|
||||
if training_args.should_log:
|
||||
try:
|
||||
|
||||
@@ -193,6 +193,18 @@ def infer_optim_dtype(model_dtype: torch.dtype) -> torch.dtype:
|
||||
return torch.float32
|
||||
|
||||
|
||||
def is_path_available(path: os.PathLike) -> bool:
|
||||
r"""
|
||||
Checks if the path is empty or not exist.
|
||||
"""
|
||||
if not os.path.exists(path):
|
||||
return True
|
||||
elif os.path.isdir(path) and not os.listdir(path):
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
def torch_gc() -> None:
|
||||
r"""
|
||||
Collects GPU memory.
|
||||
|
||||
@@ -193,6 +193,6 @@ def llama_flash_attn_forward(
|
||||
|
||||
|
||||
def apply_llama_patch() -> None:
|
||||
require_version("transformers==4.39.2", "To fix: pip install transformers==4.39.2")
|
||||
require_version("transformers==4.39.3", "To fix: pip install transformers==4.39.3")
|
||||
LlamaAttention.forward = llama_torch_attn_forward
|
||||
LlamaFlashAttention2.forward = llama_flash_attn_forward
|
||||
|
||||
@@ -1,38 +0,0 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from transformers.models.mixtral.modeling_mixtral import MixtralBLockSparseTop2MLP, MixtralSparseMoeBlock
|
||||
|
||||
|
||||
def mlp_forward(self: "MixtralBLockSparseTop2MLP", hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
|
||||
current_hidden_states = self.w2(current_hidden_states)
|
||||
return current_hidden_states
|
||||
|
||||
|
||||
# Modified from: https://huggingface.co/deepseek-ai/deepseek-moe-16b-base/blob/main/modeling_deepseek.py
|
||||
def moe_forward(self: "MixtralSparseMoeBlock", hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
||||
hidden_states = hidden_states.view(-1, hidden_dim)
|
||||
# router_logits: (batch * sequence_length, n_experts)
|
||||
router_logits = self.gate(hidden_states)
|
||||
|
||||
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
||||
topk_weight, topk_idx = torch.topk(routing_weights, self.top_k, dim=-1, sorted=False)
|
||||
topk_weight /= topk_weight.sum(dim=-1, keepdim=True)
|
||||
# we cast back to the input dtype
|
||||
topk_weight = topk_weight.to(hidden_states.dtype)
|
||||
|
||||
hidden_states = hidden_states.repeat_interleave(self.top_k, dim=0)
|
||||
y = torch.empty_like(hidden_states)
|
||||
flat_topk_idx = topk_idx.view(-1)
|
||||
for i in range(self.num_experts):
|
||||
expert = self.experts[i]
|
||||
y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
|
||||
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
||||
final_hidden_states = y.reshape(batch_size, sequence_length, hidden_dim)
|
||||
return final_hidden_states, router_logits
|
||||
|
||||
|
||||
def patch_mixtral_replace_moe_impl() -> None:
|
||||
MixtralBLockSparseTop2MLP.forward = mlp_forward
|
||||
MixtralSparseMoeBlock.forward = moe_forward
|
||||
@@ -84,9 +84,9 @@ class DataArguments:
|
||||
"help": "Whether or not to pack the sequences in training. Will automatically enable in pre-training."
|
||||
},
|
||||
)
|
||||
cache_path: Optional[str] = field(
|
||||
tokenized_path: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Path to save or load the pre-processed datasets."},
|
||||
metadata={"help": "Path to save or load the tokenized datasets."},
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
|
||||
@@ -17,8 +17,7 @@ from ..extras.logging import get_logger
|
||||
from ..extras.misc import get_current_device, infer_optim_dtype
|
||||
from ..extras.packages import is_flash_attn2_available
|
||||
from ..extras.patches.llama_patch import apply_llama_patch
|
||||
from ..extras.patches.mixtral_patch import patch_mixtral_replace_moe_impl
|
||||
from .utils import QuantizationMethod
|
||||
from .utils import QuantizationMethod, add_z3_leaf_module
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -32,47 +31,6 @@ logger = get_logger(__name__)
|
||||
SUPPORTED_CLASS_FOR_S2ATTN = ["llama"]
|
||||
|
||||
|
||||
def _noisy_mean_initialization(embed_weight: torch.Tensor, num_new_tokens: int):
|
||||
embedding_dim = embed_weight.size(1)
|
||||
avg_weight = embed_weight[:-num_new_tokens].mean(dim=0, keepdim=True)
|
||||
noise_weight = torch.empty_like(embed_weight[-num_new_tokens:])
|
||||
noise_weight.normal_(mean=0, std=(1.0 / math.sqrt(embedding_dim)))
|
||||
embed_weight[-num_new_tokens:] = avg_weight + noise_weight
|
||||
|
||||
|
||||
def _resize_embedding_layer(model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer") -> None:
|
||||
r"""
|
||||
Resize token embeddings.
|
||||
"""
|
||||
if is_deepspeed_zero3_enabled():
|
||||
import deepspeed # type: ignore
|
||||
|
||||
params = [model.get_input_embeddings().weight]
|
||||
if model.get_output_embeddings() is not None and not model.config.tie_word_embeddings:
|
||||
params.append(model.get_output_embeddings().weight)
|
||||
|
||||
context_maybe_zero3 = deepspeed.zero.GatheredParameters(params, modifier_rank=0)
|
||||
else:
|
||||
context_maybe_zero3 = nullcontext()
|
||||
|
||||
with context_maybe_zero3:
|
||||
current_embedding_size = model.get_input_embeddings().weight.size(0)
|
||||
|
||||
if len(tokenizer) > current_embedding_size:
|
||||
if not isinstance(model.get_output_embeddings(), torch.nn.Linear):
|
||||
logger.warning("Current model does not support resizing token embeddings.")
|
||||
return
|
||||
|
||||
model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=64)
|
||||
with context_maybe_zero3:
|
||||
new_embedding_size = model.get_input_embeddings().weight.size(0)
|
||||
num_new_tokens = new_embedding_size - current_embedding_size
|
||||
_noisy_mean_initialization(model.get_input_embeddings().weight.data, num_new_tokens)
|
||||
_noisy_mean_initialization(model.get_output_embeddings().weight.data, num_new_tokens)
|
||||
|
||||
logger.info("Resized token embeddings from {} to {}.".format(current_embedding_size, new_embedding_size))
|
||||
|
||||
|
||||
def _get_quantization_dataset(tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments") -> List[str]:
|
||||
r"""
|
||||
Inspired by: https://github.com/huggingface/optimum/blob/v1.16.0/optimum/gptq/data.py#L133
|
||||
@@ -180,8 +138,12 @@ def _configure_quantization(
|
||||
quant_method = quantization_config.get("quant_method", "")
|
||||
|
||||
if quant_method == QuantizationMethod.GPTQ:
|
||||
require_version("auto_gptq>=0.5.0", "To fix: pip install auto_gptq>=0.5.0")
|
||||
quantization_config["use_exllama"] = False # disable exllama
|
||||
|
||||
if quant_method == QuantizationMethod.AWQ:
|
||||
require_version("autoawq", "To fix: pip install autoawq")
|
||||
|
||||
if quant_method == QuantizationMethod.AQLM:
|
||||
require_version("transformers>=4.39.0", "To fix: pip install transformers>=4.39.0")
|
||||
require_version("aqlm>=1.1.0", "To fix: pip install aqlm[gpu]>=1.1.0")
|
||||
@@ -235,6 +197,47 @@ def _configure_quantization(
|
||||
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
|
||||
|
||||
|
||||
def _noisy_mean_initialization(embed_weight: torch.Tensor, num_new_tokens: int):
|
||||
embedding_dim = embed_weight.size(1)
|
||||
avg_weight = embed_weight[:-num_new_tokens].mean(dim=0, keepdim=True)
|
||||
noise_weight = torch.empty_like(embed_weight[-num_new_tokens:])
|
||||
noise_weight.normal_(mean=0, std=(1.0 / math.sqrt(embedding_dim)))
|
||||
embed_weight[-num_new_tokens:] = avg_weight + noise_weight
|
||||
|
||||
|
||||
def _resize_embedding_layer(model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer") -> None:
|
||||
r"""
|
||||
Resize token embeddings.
|
||||
"""
|
||||
if is_deepspeed_zero3_enabled():
|
||||
import deepspeed # type: ignore
|
||||
|
||||
params = [model.get_input_embeddings().weight]
|
||||
if model.get_output_embeddings() is not None and not model.config.tie_word_embeddings:
|
||||
params.append(model.get_output_embeddings().weight)
|
||||
|
||||
context_maybe_zero3 = deepspeed.zero.GatheredParameters(params, modifier_rank=0)
|
||||
else:
|
||||
context_maybe_zero3 = nullcontext()
|
||||
|
||||
with context_maybe_zero3:
|
||||
current_embedding_size = model.get_input_embeddings().weight.size(0)
|
||||
|
||||
if len(tokenizer) > current_embedding_size:
|
||||
if not isinstance(model.get_output_embeddings(), torch.nn.Linear):
|
||||
logger.warning("Current model does not support resizing token embeddings.")
|
||||
return
|
||||
|
||||
model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=64)
|
||||
with context_maybe_zero3:
|
||||
new_embedding_size = model.get_input_embeddings().weight.size(0)
|
||||
num_new_tokens = new_embedding_size - current_embedding_size
|
||||
_noisy_mean_initialization(model.get_input_embeddings().weight.data, num_new_tokens)
|
||||
_noisy_mean_initialization(model.get_output_embeddings().weight.data, num_new_tokens)
|
||||
|
||||
logger.info("Resized token embeddings from {} to {}.".format(current_embedding_size, new_embedding_size))
|
||||
|
||||
|
||||
def _fp32_forward_post_hook(
|
||||
module: "torch.nn.Module", args: Tuple["torch.Tensor"], output: "torch.Tensor"
|
||||
) -> "torch.Tensor":
|
||||
@@ -348,15 +351,15 @@ def patch_model(
|
||||
if is_trainable:
|
||||
_prepare_model_for_training(model, model_args)
|
||||
|
||||
if getattr(model.config, "model_type", None) == "mixtral" and is_deepspeed_zero3_enabled():
|
||||
require_version("deepspeed>=0.13.0", "To fix: pip install deepspeed>=0.13.0")
|
||||
from deepspeed.utils import set_z3_leaf_modules # type: ignore
|
||||
if getattr(model.config, "model_type", None) == "mixtral":
|
||||
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
|
||||
|
||||
set_z3_leaf_modules(model, [MixtralSparseMoeBlock])
|
||||
add_z3_leaf_module(model, MixtralSparseMoeBlock)
|
||||
|
||||
if is_trainable:
|
||||
patch_mixtral_replace_moe_impl()
|
||||
if getattr(model.config, "model_type", None) == "qwen2moe":
|
||||
from transformers.models.qwen2_moe.modeling_qwen2_moe import Qwen2MoeSparseMoeBlock
|
||||
|
||||
add_z3_leaf_module(model, Qwen2MoeSparseMoeBlock)
|
||||
|
||||
try:
|
||||
model.add_model_tags(["llama-factory"])
|
||||
|
||||
@@ -3,7 +3,9 @@ from typing import TYPE_CHECKING, Dict, List
|
||||
|
||||
import torch
|
||||
from transformers import PreTrainedModel
|
||||
from transformers.integrations import is_deepspeed_zero3_enabled
|
||||
from transformers.utils import cached_file
|
||||
from transformers.utils.versions import require_version
|
||||
|
||||
from ..extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
|
||||
from ..extras.logging import get_logger
|
||||
@@ -28,11 +30,23 @@ class QuantizationMethod(str, Enum):
|
||||
GPTQ = "gptq"
|
||||
AWQ = "awq"
|
||||
AQLM = "aqlm"
|
||||
QUANTO = "quanto"
|
||||
|
||||
|
||||
def add_z3_leaf_module(model: "PreTrainedModel", module: "torch.nn.Module") -> None:
|
||||
r"""
|
||||
Sets module as a leaf module to skip partitioning in deepspeed zero3.
|
||||
"""
|
||||
if is_deepspeed_zero3_enabled():
|
||||
require_version("deepspeed>=0.13.0", "To fix: pip install deepspeed>=0.13.0")
|
||||
from deepspeed.utils import set_z3_leaf_modules # type: ignore
|
||||
|
||||
set_z3_leaf_modules(model, [module])
|
||||
|
||||
|
||||
def find_all_linear_modules(model: "PreTrainedModel") -> List[str]:
|
||||
r"""
|
||||
Finds all available modules to apply lora.
|
||||
Finds all available modules to apply lora or galore.
|
||||
"""
|
||||
quantization_method = getattr(model, "quantization_method", None)
|
||||
if quantization_method is None:
|
||||
|
||||
@@ -1,54 +0,0 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, List, Sequence, Tuple
|
||||
|
||||
import torch
|
||||
from transformers import DataCollatorForSeq2Seq
|
||||
|
||||
|
||||
@dataclass
|
||||
class DPODataCollatorWithPadding(DataCollatorForSeq2Seq):
|
||||
r"""
|
||||
Data collator for pairwise data.
|
||||
"""
|
||||
|
||||
def _pad_labels(self, batch: torch.Tensor, positions: List[Tuple[int, int]]) -> torch.Tensor:
|
||||
padded_labels = []
|
||||
for feature, (prompt_len, answer_len) in zip(batch, positions):
|
||||
if self.tokenizer.padding_side == "left":
|
||||
start, end = feature.size(0) - answer_len, feature.size(0)
|
||||
else:
|
||||
start, end = prompt_len, prompt_len + answer_len
|
||||
padded_tensor = self.label_pad_token_id * torch.ones_like(feature)
|
||||
padded_tensor[start:end] = feature[start:end]
|
||||
padded_labels.append(padded_tensor)
|
||||
return torch.stack(padded_labels, dim=0).contiguous() # in contiguous memory
|
||||
|
||||
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
|
||||
r"""
|
||||
Pads batched data to the longest sequence in the batch.
|
||||
|
||||
We generate 2 * n examples where the first n examples represent chosen examples and
|
||||
the last n examples represent rejected examples.
|
||||
"""
|
||||
concatenated_features = []
|
||||
label_positions = []
|
||||
for key in ("chosen_ids", "rejected_ids"):
|
||||
for feature in features:
|
||||
prompt_len, answer_len = len(feature["prompt_ids"]), len(feature[key])
|
||||
concatenated_features.append(
|
||||
{
|
||||
"input_ids": feature["prompt_ids"] + feature[key],
|
||||
"attention_mask": [1] * (prompt_len + answer_len),
|
||||
}
|
||||
)
|
||||
label_positions.append((prompt_len, answer_len))
|
||||
|
||||
batch = self.tokenizer.pad(
|
||||
concatenated_features,
|
||||
padding=self.padding,
|
||||
max_length=self.max_length,
|
||||
pad_to_multiple_of=self.pad_to_multiple_of,
|
||||
return_tensors=self.return_tensors,
|
||||
)
|
||||
batch["labels"] = self._pad_labels(batch["input_ids"], label_positions)
|
||||
return batch
|
||||
@@ -1,29 +0,0 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, Sequence
|
||||
|
||||
import torch
|
||||
from transformers import DataCollatorWithPadding
|
||||
|
||||
|
||||
@dataclass
|
||||
class PairwiseDataCollatorWithPadding(DataCollatorWithPadding):
|
||||
r"""
|
||||
Data collator for pairwise data.
|
||||
"""
|
||||
|
||||
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
|
||||
r"""
|
||||
Pads batched data to the longest sequence in the batch.
|
||||
|
||||
We generate 2 * n examples where the first n examples represent chosen examples and
|
||||
the last n examples represent rejected examples.
|
||||
"""
|
||||
features = [
|
||||
{
|
||||
"input_ids": feature["prompt_ids"] + feature[key],
|
||||
"attention_mask": [1] * (len(feature["prompt_ids"]) + len(feature[key])),
|
||||
}
|
||||
for key in ("chosen_ids", "rejected_ids")
|
||||
for feature in features
|
||||
]
|
||||
return super().__call__(features)
|
||||
Reference in New Issue
Block a user