support SimPO #3900
Former-commit-id: 6b954ce60155cf8334150b795cfc4bb63ca74c8b
This commit is contained in:
@@ -4,6 +4,7 @@ from types import MethodType
|
||||
from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from transformers import Trainer
|
||||
from trl import DPOTrainer
|
||||
from trl.trainer.utils import disable_dropout_in_model
|
||||
@@ -50,10 +51,11 @@ class CustomDPOTrainer(DPOTrainer):
|
||||
self._stored_metrics = defaultdict(lambda: defaultdict(list))
|
||||
|
||||
# dpo hyperparams
|
||||
self.beta = finetuning_args.dpo_beta
|
||||
self.beta = finetuning_args.pref_beta
|
||||
self.loss_type = finetuning_args.pref_loss
|
||||
self.ftx_gamma = finetuning_args.pref_ftx
|
||||
self.label_smoothing = finetuning_args.dpo_label_smoothing
|
||||
self.loss_type = finetuning_args.dpo_loss
|
||||
self.ftx_gamma = finetuning_args.dpo_ftx
|
||||
self.simpo_gamma = finetuning_args.simpo_gamma
|
||||
|
||||
Trainer.__init__(self, model=model, **kwargs)
|
||||
if not hasattr(self, "accelerator"):
|
||||
@@ -90,15 +92,66 @@ class CustomDPOTrainer(DPOTrainer):
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||
|
||||
def sft_loss(self, chosen_logits: "torch.FloatTensor", chosen_labels: "torch.LongTensor") -> "torch.Tensor":
|
||||
def sft_loss(self, batch: Dict[str, "torch.Tensor"], chosen_logits: "torch.FloatTensor") -> "torch.Tensor":
|
||||
r"""
|
||||
Computes supervised cross-entropy loss of given labels under the given logits.
|
||||
|
||||
Returns:
|
||||
A tensor of shape (batch_size,) containing the cross-entropy loss of each samples.
|
||||
"""
|
||||
all_logps = self.get_batch_logps(chosen_logits, chosen_labels, average_log_prob=True)
|
||||
return -all_logps
|
||||
batch_size = batch["input_ids"].size(0) // 2
|
||||
chosen_labels, _ = batch["labels"].split(batch_size, dim=0)
|
||||
chosen_logps = self.get_batch_logps(chosen_logits, chosen_labels, average_log_prob=True)
|
||||
return -chosen_logps
|
||||
|
||||
def odds_ratio_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor":
|
||||
r"""
|
||||
Computes ORPO's odds ratio (OR) loss for batched log probabilities of the policy model.
|
||||
"""
|
||||
log_odds = (chosen_logps - rejected_logps) - (
|
||||
torch.log1p(-torch.exp(chosen_logps)) - torch.log1p(-torch.exp(rejected_logps))
|
||||
)
|
||||
sft_loss = -chosen_logps
|
||||
odds_ratio_loss = -F.logsigmoid(log_odds)
|
||||
orpo_loss = sft_loss + self.beta * odds_ratio_loss
|
||||
return orpo_loss
|
||||
|
||||
def simpo_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor":
|
||||
r"""
|
||||
Computes SimPO loss for batched log probabilities of the policy model.
|
||||
"""
|
||||
pi_logratios = chosen_logps - rejected_logps
|
||||
gamma_logratios = self.simpo_gamma / self.beta
|
||||
logits = pi_logratios - gamma_logratios
|
||||
simpo_loss = -F.logsigmoid(self.beta * logits)
|
||||
return simpo_loss
|
||||
|
||||
def compute_preference_loss(
|
||||
self,
|
||||
policy_chosen_logps: "torch.Tensor",
|
||||
policy_rejected_logps: "torch.Tensor",
|
||||
reference_chosen_logps: Optional["torch.Tensor"],
|
||||
reference_rejected_logps: Optional["torch.Tensor"],
|
||||
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]:
|
||||
r"""
|
||||
Computes loss for preference learning.
|
||||
"""
|
||||
if not self.finetuning_args.use_ref_model:
|
||||
if self.loss_type == "orpo":
|
||||
losses = self.odds_ratio_loss(policy_chosen_logps, policy_rejected_logps)
|
||||
elif self.loss_type == "simpo":
|
||||
losses = self.simpo_loss(policy_chosen_logps, policy_rejected_logps)
|
||||
else:
|
||||
raise NotImplementedError("Unknown loss type: {}.".format(self.loss_type))
|
||||
|
||||
chosen_rewards = self.beta * policy_chosen_logps.to(self.accelerator.device).detach()
|
||||
rejected_rewards = self.beta * policy_rejected_logps.to(self.accelerator.device).detach()
|
||||
else:
|
||||
losses, chosen_rewards, rejected_rewards = self.dpo_loss(
|
||||
policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps
|
||||
)
|
||||
|
||||
return losses, chosen_rewards, rejected_rewards
|
||||
|
||||
def concatenated_forward(
|
||||
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
|
||||
@@ -108,13 +161,15 @@ class CustomDPOTrainer(DPOTrainer):
|
||||
|
||||
Otherwise the average log probabilities.
|
||||
"""
|
||||
batch_copied = {k: v.detach().clone() for k, v in batch.items()} # avoid error
|
||||
all_logits: "torch.Tensor" = model(**batch_copied, return_dict=True, use_cache=False).logits.to(torch.float32)
|
||||
if self.finetuning_args.use_ref_model:
|
||||
batch = {k: v.detach().clone() for k, v in batch.items()} # avoid error
|
||||
|
||||
all_logits: "torch.Tensor" = model(**batch, return_dict=True, use_cache=False).logits.to(torch.float32)
|
||||
|
||||
all_logps = self.get_batch_logps(
|
||||
logits=all_logits,
|
||||
labels=batch_copied["labels"],
|
||||
average_log_prob=(self.loss_type == "ipo"),
|
||||
labels=batch["labels"],
|
||||
average_log_prob=(self.loss_type in ["ipo", "orpo", "simpo"]),
|
||||
is_encoder_decoder=self.is_encoder_decoder,
|
||||
label_pad_token_id=self.label_pad_token_id,
|
||||
)
|
||||
@@ -123,6 +178,32 @@ class CustomDPOTrainer(DPOTrainer):
|
||||
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
|
||||
return chosen_logps, rejected_logps, chosen_logits, rejected_logits
|
||||
|
||||
def compute_reference_log_probs(
|
||||
self, batch: Dict[str, "torch.Tensor"]
|
||||
) -> Tuple[Optional["torch.Tensor"], Optional["torch.Tensor"]]:
|
||||
r"""
|
||||
Computes log probabilities of the reference model.
|
||||
"""
|
||||
if not self.finetuning_args.use_ref_model:
|
||||
return None, None
|
||||
|
||||
if self.ref_model is None:
|
||||
ref_model = self.model
|
||||
ref_context = self.accelerator.unwrap_model(self.model).disable_adapter()
|
||||
else:
|
||||
ref_model = self.ref_model
|
||||
ref_context = nullcontext()
|
||||
|
||||
with torch.no_grad(), ref_context:
|
||||
(
|
||||
reference_chosen_logps,
|
||||
reference_rejected_logps,
|
||||
_,
|
||||
_,
|
||||
) = self.concatenated_forward(ref_model, batch)
|
||||
|
||||
return reference_chosen_logps, reference_rejected_logps
|
||||
|
||||
def get_batch_loss_metrics(
|
||||
self,
|
||||
model: "PreTrainedModel",
|
||||
@@ -140,32 +221,16 @@ class CustomDPOTrainer(DPOTrainer):
|
||||
policy_rejected_logits,
|
||||
) = self.concatenated_forward(model, batch)
|
||||
|
||||
with torch.no_grad():
|
||||
if self.ref_model is None:
|
||||
ref_model = self.model
|
||||
ref_context = self.accelerator.unwrap_model(self.model).disable_adapter()
|
||||
else:
|
||||
ref_model = self.ref_model
|
||||
ref_context = nullcontext()
|
||||
|
||||
with ref_context:
|
||||
(
|
||||
reference_chosen_logps,
|
||||
reference_rejected_logps,
|
||||
_,
|
||||
_,
|
||||
) = self.concatenated_forward(ref_model, batch)
|
||||
|
||||
losses, chosen_rewards, rejected_rewards = self.dpo_loss(
|
||||
reference_chosen_logps, reference_rejected_logps = self.compute_reference_log_probs(batch)
|
||||
losses, chosen_rewards, rejected_rewards = self.compute_preference_loss(
|
||||
policy_chosen_logps,
|
||||
policy_rejected_logps,
|
||||
reference_chosen_logps,
|
||||
reference_rejected_logps,
|
||||
)
|
||||
sft_loss = self.sft_loss(batch, policy_chosen_logits) # compute chosen_logps with masks
|
||||
if self.ftx_gamma > 1e-6:
|
||||
batch_size = batch["input_ids"].size(0) // 2
|
||||
chosen_labels, _ = batch["labels"].split(batch_size, dim=0)
|
||||
losses += self.ftx_gamma * self.sft_loss(policy_chosen_logits, chosen_labels)
|
||||
losses += self.ftx_gamma * sft_loss
|
||||
|
||||
reward_accuracies = (chosen_rewards > rejected_rewards).float()
|
||||
|
||||
@@ -178,5 +243,8 @@ class CustomDPOTrainer(DPOTrainer):
|
||||
metrics["{}logps/chosen".format(prefix)] = policy_chosen_logps.detach().mean().cpu()
|
||||
metrics["{}logits/rejected".format(prefix)] = policy_rejected_logits.detach().mean().cpu()
|
||||
metrics["{}logits/chosen".format(prefix)] = policy_chosen_logits.detach().mean().cpu()
|
||||
if self.loss_type == "orpo":
|
||||
metrics["{}sft_loss".format(prefix)] = sft_loss.detach().mean().cpu()
|
||||
metrics["{}odds_ratio_loss".format(prefix)] = ((losses - sft_loss) / self.beta).detach().mean().cpu()
|
||||
|
||||
return losses.mean(), metrics
|
||||
|
||||
Reference in New Issue
Block a user