add API demo from #1
Former-commit-id: c955edcef168da44257c5b50d7bc59266d909782
This commit is contained in:
118
src/api_demo.py
Normal file
118
src/api_demo.py
Normal file
@@ -0,0 +1,118 @@
|
||||
# coding=utf-8
|
||||
# Implements API for fine-tuned models.
|
||||
# Usage: python api_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
|
||||
|
||||
# Request:
|
||||
# curl http://127.0.0.1:8000 --header 'Content-Type: application/json' --data '{"prompt": "Hello there!", "history": []}'
|
||||
|
||||
# Response:
|
||||
# {
|
||||
# "response": "'Hi there!'",
|
||||
# "history": "[('Hello there!', 'Hi there!')]",
|
||||
# "status": 200,
|
||||
# "time": "2000-00-00 00:00:00"
|
||||
# }
|
||||
|
||||
|
||||
import json
|
||||
import torch
|
||||
import uvicorn
|
||||
import datetime
|
||||
from fastapi import FastAPI, Request
|
||||
|
||||
from utils import (
|
||||
load_pretrained,
|
||||
prepare_infer_args,
|
||||
get_logits_processor
|
||||
)
|
||||
|
||||
|
||||
def torch_gc():
|
||||
if not torch.cuda.is_available():
|
||||
num_gpus = torch.cuda.device_count()
|
||||
for device_id in range(num_gpus):
|
||||
with torch.cuda.device(device_id):
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
|
||||
@app.post("/")
|
||||
async def create_item(request: Request):
|
||||
global model, tokenizer, format_example
|
||||
|
||||
# Parse the request JSON
|
||||
json_post_raw = await request.json()
|
||||
json_post = json.dumps(json_post_raw)
|
||||
json_post_list = json.loads(json_post)
|
||||
prompt = json_post_list.get("prompt")
|
||||
history = json_post_list.get("history")
|
||||
|
||||
# Tokenize the input prompt
|
||||
input_ids = tokenizer([format_example(prompt, history)], return_tensors="pt")["input_ids"]
|
||||
input_ids = input_ids.to(model.device)
|
||||
|
||||
# Generation arguments
|
||||
gen_kwargs = {
|
||||
"input_ids": input_ids,
|
||||
"do_sample": True,
|
||||
"top_p": 0.7,
|
||||
"temperature": 0.95,
|
||||
"num_beams": 1,
|
||||
"max_new_tokens": 512,
|
||||
"repetition_penalty": 1.0,
|
||||
"logits_processor": get_logits_processor()
|
||||
}
|
||||
|
||||
# Generate response
|
||||
with torch.no_grad():
|
||||
generation_output = model.generate(**gen_kwargs)
|
||||
outputs = generation_output.tolist()[0][len(input_ids[0]):]
|
||||
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
||||
|
||||
# Update history
|
||||
history = history + [(prompt, response)]
|
||||
|
||||
# Prepare response
|
||||
now = datetime.datetime.now()
|
||||
time = now.strftime("%Y-%m-%d %H:%M:%S")
|
||||
answer = {
|
||||
"response": repr(response),
|
||||
"history": repr(history),
|
||||
"status": 200,
|
||||
"time": time
|
||||
}
|
||||
|
||||
# Log and clean up
|
||||
log = "[" + time + "] " + "\", prompt:\"" + prompt + "\", response:\"" + repr(response) + "\""
|
||||
print(log)
|
||||
torch_gc()
|
||||
|
||||
return answer
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
model_args, data_args, finetuning_args = prepare_infer_args()
|
||||
model, tokenizer = load_pretrained(model_args, finetuning_args)
|
||||
|
||||
def format_example_alpaca(query, history):
|
||||
prompt = "Below is an instruction that describes a task. "
|
||||
prompt += "Write a response that appropriately completes the request.\n"
|
||||
prompt += "Instruction:\n"
|
||||
for old_query, response in history:
|
||||
prompt += "Human: {}\nAssistant: {}\n".format(old_query, response)
|
||||
prompt += "Human: {}\nAssistant:".format(query)
|
||||
return prompt
|
||||
|
||||
def format_example_ziya(query, history):
|
||||
prompt = ""
|
||||
for old_query, response in history:
|
||||
prompt += "<human>: {}\n<bot>: {}\n".format(old_query, response)
|
||||
prompt += "<human>: {}\n<bot>:".format(query)
|
||||
return prompt
|
||||
|
||||
format_example = format_example_alpaca if data_args.prompt_template == "alpaca" else format_example_ziya
|
||||
|
||||
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
|
||||
Reference in New Issue
Block a user