Merge pull request #4224 from chuan298/main
Implement efficient packing without cross-contamination attention Former-commit-id: ac382cc9fe4ec483658fd54f07f9a123788ce1b1
This commit is contained in:
147
src/llamafactory/model/model_utils/packing.py
Normal file
147
src/llamafactory/model/model_utils/packing.py
Normal file
@@ -0,0 +1,147 @@
|
||||
# Copyright 2024 Musab Gultekin and the LlamaFactory team.
|
||||
#
|
||||
# This code is based on the Musab Gultekin's functionary library.
|
||||
# https://github.com/MeetKai/functionary/blob/main/functionary/train/packing/monkey_patch_packing.py
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# MIT License
|
||||
#
|
||||
# Copyright (c) 2023 Musab Gultekin
|
||||
#
|
||||
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
# of this software and associated documentation files (the "Software"), to deal
|
||||
# in the Software without restriction, including without limitation the rights
|
||||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
# copies of the Software, and to permit persons to whom the Software is
|
||||
# furnished to do so, subject to the following conditions:
|
||||
#
|
||||
# The above copyright notice and this permission notice shall be included in all
|
||||
# copies or substantial portions of the Software.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
|
||||
from typing import TYPE_CHECKING, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import transformers.models
|
||||
|
||||
from ...extras.constants import SUPPORTED_CLASS_FOR_BLOCK_DIAG_ATTN
|
||||
from ...extras.logging import get_logger
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
from ...hparams import ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def get_seqlens_in_batch(attention_mask: "torch.Tensor") -> "torch.Tensor":
|
||||
r"""
|
||||
Gets the sequnce lengths in the current batch.
|
||||
|
||||
e.g.
|
||||
```
|
||||
[
|
||||
[1, 1, 2, 2, 2, 0],
|
||||
[1, 2, 2, 3, 3, 3],
|
||||
]
|
||||
```
|
||||
->
|
||||
```
|
||||
[2, 3, 1, 2, 3]
|
||||
```
|
||||
"""
|
||||
bsz = attention_mask.size(0)
|
||||
dtype, device = attention_mask.dtype, attention_mask.device
|
||||
max_num = torch.max(attention_mask)
|
||||
counts: "torch.Tensor" = torch.zeros((bsz, max_num), dtype=dtype, device=device)
|
||||
for i in range(max_num):
|
||||
counts[:, i] = torch.sum(attention_mask == (i + 1), dim=-1)
|
||||
|
||||
counts = counts.flatten()
|
||||
seqlens = counts[counts.nonzero().squeeze()]
|
||||
return seqlens
|
||||
|
||||
|
||||
def get_unpad_data(attention_mask: "torch.Tensor") -> Tuple["torch.Tensor", "torch.Tensor", int]:
|
||||
r"""
|
||||
Prepares the indices and seqlens for flash attn varlen function.
|
||||
|
||||
Returns:
|
||||
indices: indices of non-masked tokens from the flattened sequence.
|
||||
cu_seqlens: the cumulative sequence lengths in the current batch, always starts from 0.
|
||||
max_seqlen_in_batch: the largest seqlen in the current batch.
|
||||
|
||||
e.g.
|
||||
```
|
||||
[
|
||||
[1, 1, 2, 2, 2, 0],
|
||||
[1, 2, 2, 3, 3, 3],
|
||||
]
|
||||
```
|
||||
->
|
||||
```
|
||||
[0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11]
|
||||
[0, 2, 5, 6, 8, 11]
|
||||
3
|
||||
```
|
||||
"""
|
||||
seqlens_in_batch = get_seqlens_in_batch(attention_mask)
|
||||
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
||||
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
||||
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
||||
return indices, cu_seqlens, max_seqlen_in_batch
|
||||
|
||||
|
||||
def patch_for_block_diag_attn(model_type: str) -> None:
|
||||
if model_type == "falcon":
|
||||
transformers.models.falcon.modeling_falcon._get_unpad_data = get_unpad_data
|
||||
elif model_type == "gemma":
|
||||
transformers.models.gemma.modeling_gemma._get_unpad_data = get_unpad_data
|
||||
elif model_type == "gemma2":
|
||||
transformers.models.gemma2.modeling_gemma2._get_unpad_data = get_unpad_data
|
||||
elif model_type == "llama":
|
||||
transformers.models.llama.modeling_llama._get_unpad_data = get_unpad_data
|
||||
elif model_type == "mistral":
|
||||
transformers.models.mistral.modeling_mistral._get_unpad_data = get_unpad_data
|
||||
elif model_type == "phi":
|
||||
transformers.models.phi.modeling_phi._get_unpad_data = get_unpad_data
|
||||
elif model_type == "phi3":
|
||||
transformers.models.phi3.modeling_phi3._get_unpad_data = get_unpad_data
|
||||
elif model_type == "qwen2":
|
||||
transformers.models.qwen2.modeling_qwen2._get_unpad_data = get_unpad_data
|
||||
elif model_type == "starcoder2":
|
||||
transformers.models.starcoder2.modeling_starcoder2._get_unpad_data = get_unpad_data
|
||||
|
||||
|
||||
def configure_packing(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
|
||||
if not is_trainable or not model_args.block_diag_attn:
|
||||
return
|
||||
|
||||
model_type = getattr(config, "model_type", None)
|
||||
if model_type in SUPPORTED_CLASS_FOR_BLOCK_DIAG_ATTN:
|
||||
patch_for_block_diag_attn(model_type)
|
||||
logger.info("Using block diagonal attention for sequence packing without cross-attention.")
|
||||
else:
|
||||
raise ValueError("Current model does not support block diagonal attention.")
|
||||
@@ -29,6 +29,7 @@ from .model_utils.checkpointing import prepare_model_for_training
|
||||
from .model_utils.embedding import resize_embedding_layer
|
||||
from .model_utils.longlora import configure_longlora
|
||||
from .model_utils.moe import add_z3_leaf_module, configure_moe
|
||||
from .model_utils.packing import configure_packing
|
||||
from .model_utils.quantization import configure_quantization
|
||||
from .model_utils.rope import configure_rope
|
||||
from .model_utils.valuehead import prepare_valuehead_model
|
||||
@@ -73,6 +74,7 @@ def patch_config(
|
||||
configure_quantization(config, tokenizer, model_args, init_kwargs)
|
||||
configure_moe(config, model_args, is_trainable)
|
||||
configure_visual_model(config)
|
||||
configure_packing(config, model_args, is_trainable)
|
||||
|
||||
if model_args.use_cache and not is_trainable:
|
||||
setattr(config, "use_cache", True)
|
||||
|
||||
Reference in New Issue
Block a user