support report custom args
Former-commit-id: d41254c40a1c5cacf9377096adb27efa9bdb79ea
This commit is contained in:
15
README_zh.md
15
README_zh.md
@@ -4,7 +4,7 @@
|
||||
[](LICENSE)
|
||||
[](https://github.com/hiyouga/LLaMA-Factory/commits/main)
|
||||
[](https://pypi.org/project/llamafactory/)
|
||||
[](#使用了-llama-factory-的项目)
|
||||
[](https://scholar.google.com/scholar?cites=12620864006390196564)
|
||||
[](https://github.com/hiyouga/LLaMA-Factory/pulls)
|
||||
[](https://discord.gg/rKfvV9r9FK)
|
||||
[](https://twitter.com/llamafactory_ai)
|
||||
@@ -13,6 +13,7 @@
|
||||
[](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
|
||||
[](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
|
||||
[](https://aws.amazon.com/cn/blogs/china/a-one-stop-code-free-model-fine-tuning-deployment-platform-based-on-sagemaker-and-llama-factory/)
|
||||
[](https://gitcode.com/zhengyaowei/LLaMA-Factory)
|
||||
|
||||
[](https://trendshift.io/repositories/4535)
|
||||
|
||||
@@ -88,18 +89,18 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
|
||||
|
||||
## 更新日志
|
||||
|
||||
[24/12/21] 我们支持了 **[SwanLab](https://github.com/SwanHubX/SwanLab)** 跟踪与可视化实验。详细用法请参考 [此部分](#使用-wb-面板)。
|
||||
[24/12/21] 我们支持了使用 **[SwanLab](https://github.com/SwanHubX/SwanLab)** 跟踪与可视化实验。详细用法请参考 [此部分](#使用-swanlab-面板)。
|
||||
|
||||
[24/11/27] 我们支持了 **[Skywork-o1](https://huggingface.co/Skywork/Skywork-o1-Open-Llama-3.1-8B)** 模型的微调和 **[OpenO1](https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT)** 数据集。
|
||||
|
||||
[24/10/09] 我们支持了从 **[魔乐社区](https://modelers.cn/models)** 下载预训练模型和数据集。详细用法请参照 [此教程](#从魔乐社区下载)。
|
||||
|
||||
<details><summary>展开日志</summary>
|
||||
|
||||
[24/09/19] 我们支持了 **[Qwen2.5](https://qwenlm.github.io/blog/qwen2.5/)** 模型的微调。
|
||||
|
||||
[24/08/30] 我们支持了 **[Qwen2-VL](https://qwenlm.github.io/blog/qwen2-vl/)** 模型的微调。感谢 [@simonJJJ](https://github.com/simonJJJ) 的 PR。
|
||||
|
||||
<details><summary>展开日志</summary>
|
||||
|
||||
[24/08/27] 我们支持了 **[Liger Kernel](https://github.com/linkedin/Liger-Kernel)**。请使用 `enable_liger_kernel: true` 来加速训练。
|
||||
|
||||
[24/08/09] 我们支持了 **[Adam-mini](https://github.com/zyushun/Adam-mini)** 优化器。详细用法请参照 [examples](examples/README_zh.md)。感谢 [@relic-yuexi](https://github.com/relic-yuexi) 的 PR。
|
||||
@@ -389,7 +390,7 @@ cd LLaMA-Factory
|
||||
pip install -e ".[torch,metrics]"
|
||||
```
|
||||
|
||||
可选的额外依赖项:torch、torch-npu、metrics、deepspeed、liger-kernel、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、galore、badam、adam-mini、qwen、modelscope、openmind、quality
|
||||
可选的额外依赖项:torch、torch-npu、metrics、deepspeed、liger-kernel、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、galore、badam、adam-mini、qwen、modelscope、openmind、swanlab、quality
|
||||
|
||||
> [!TIP]
|
||||
> 遇到包冲突时,可使用 `pip install --no-deps -e .` 解决。
|
||||
@@ -643,8 +644,7 @@ run_name: test_run # 可选
|
||||
|
||||
```yaml
|
||||
use_swanlab: true
|
||||
swanlab_project: test_run # 可选
|
||||
swanlab_experiment_name: test_experiment # 可选
|
||||
swanlab_run_name: test_run # 可选
|
||||
```
|
||||
|
||||
在启动训练任务时,登录SwanLab账户有以下三种方式:
|
||||
@@ -653,7 +653,6 @@ swanlab_experiment_name: test_experiment # 可选
|
||||
方式二:将环境变量 `SWANLAB_API_KEY` 设置为你的 [API 密钥](https://swanlab.cn/settings)。
|
||||
方式三:启动前使用 `swanlab login` 命令完成登录。
|
||||
|
||||
|
||||
## 使用了 LLaMA Factory 的项目
|
||||
|
||||
如果您有项目希望添加至下述列表,请通过邮件联系或者创建一个 PR。
|
||||
|
||||
Reference in New Issue
Block a user