Merge branch 'main' into main

Former-commit-id: 7be442f37d53a0c6324728fa1fa8e2c84d7f0fa5
This commit is contained in:
hoshi-hiyouga
2024-07-01 21:01:09 +08:00
committed by GitHub
176 changed files with 4760 additions and 1322 deletions

View File

@@ -1,3 +1,20 @@
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Literal, Optional
@@ -28,10 +45,6 @@ class DataArguments:
default=1024,
metadata={"help": "The cutoff length of the tokenized inputs in the dataset."},
)
reserved_label_len: int = field(
default=1,
metadata={"help": "The minimum cutoff length reserved for the tokenized labels in the dataset."},
)
train_on_prompt: bool = field(
default=False,
metadata={"help": "Whether to disable the mask on the prompt or not."},
@@ -90,15 +103,16 @@ class DataArguments:
"help": "Whether or not to pack the sequences without cross-contamination attention for efficient training."
},
)
tool_format: Optional[str] = field(
default=None,
metadata={"help": "Tool format to use for constructing function calling examples."},
)
tokenized_path: Optional[str] = field(
default=None,
metadata={"help": "Path to save or load the tokenized datasets."},
)
def __post_init__(self):
if self.reserved_label_len >= self.cutoff_len:
raise ValueError("`reserved_label_len` must be smaller than `cutoff_len`.")
if self.streaming and self.val_size > 1e-6 and self.val_size < 1:
raise ValueError("Streaming mode should have an integer val size.")