update examples
Former-commit-id: 3b5f138155d96b346bda18e465cf60ec7d99e19c
This commit is contained in:
@@ -1,14 +1,14 @@
|
||||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: dpo
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
dpo_ftx: 1.0
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: orca_rlhf
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
@@ -16,14 +16,14 @@ max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/dpo
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.00001
|
||||
@@ -32,7 +32,7 @@ lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
||||
@@ -1,19 +1,19 @@
|
||||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
adapter_name_or_path: saves/llama3-8b/lora/sft
|
||||
|
||||
# method
|
||||
### method
|
||||
finetuning_type: lora
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
task: mmlu
|
||||
split: test
|
||||
template: fewshot
|
||||
lang: en
|
||||
n_shot: 5
|
||||
|
||||
# output
|
||||
### output
|
||||
save_dir: saves/llama3-8b/lora/eval
|
||||
|
||||
# eval
|
||||
### eval
|
||||
batch_size: 4
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: orpo
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: orca_rlhf
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
@@ -15,14 +15,14 @@ max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/orpo
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.00001
|
||||
@@ -31,7 +31,7 @@ lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
reward_model: saves/llama3-8b/lora/reward
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: ppo
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
@@ -16,14 +16,14 @@ max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/ppo
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.00001
|
||||
@@ -32,7 +32,7 @@ lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# generate
|
||||
### generate
|
||||
max_new_tokens: 512
|
||||
top_k: 0
|
||||
top_p: 0.9
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
adapter_name_or_path: saves/llama3-8b/lora/sft
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_predict: true
|
||||
finetuning_type: lora
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
@@ -15,10 +15,10 @@ max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/predict
|
||||
overwrite_output_dir: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
per_device_eval_batch_size: 1
|
||||
predict_with_generate: true
|
||||
|
||||
@@ -1,27 +1,27 @@
|
||||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: pt
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: c4_demo
|
||||
cutoff_len: 1024
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.0001
|
||||
@@ -30,7 +30,7 @@ lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: rm
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: orca_rlhf
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
@@ -15,14 +15,14 @@ max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/reward
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.00001
|
||||
@@ -31,7 +31,7 @@ lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
@@ -15,14 +15,14 @@ max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.0001
|
||||
@@ -31,7 +31,7 @@ lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
@@ -16,6 +16,6 @@ overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
tokenized_path: saves/llama3-8b/dataset/sft
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/sft
|
||||
overwrite_output_dir: true
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
# model
|
||||
### model
|
||||
model_name_or_path: llava-hf/llava-1.5-7b-hf
|
||||
visual_inputs: true
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: mllm_demo
|
||||
template: vicuna
|
||||
cutoff_len: 1024
|
||||
@@ -16,14 +16,14 @@ max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llava1_5-7b/lora/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.0001
|
||||
@@ -32,7 +32,7 @@ lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
||||
Reference in New Issue
Block a user