update readme

Former-commit-id: 42e042a4206aeb5177ddde56386e9655b0c06460
This commit is contained in:
hiyouga
2023-12-12 11:44:30 +08:00
parent 6975124a57
commit 9e2cc21d04
4 changed files with 6 additions and 21 deletions

View File

@@ -148,17 +148,6 @@ def prepare_model_for_training(
param.data = param.data.to(torch.float32)
logger.info("Upcasting weights in layernorm in float32.")
if finetuning_args.neft_alpha > 1e-6:
def neftune_forward_hook(module: torch.nn.Module, args: Tuple[torch.Tensor], output: torch.Tensor):
if module.training:
dims = torch.tensor(output.size(1) * output.size(2))
mag_norm = finetuning_args.neft_alpha / torch.sqrt(dims)
output = output + torch.zeros_like(output).uniform_(-mag_norm, mag_norm)
return output
model.get_input_embeddings().register_forward_hook(neftune_forward_hook)
logger.info("Using noisy embedding with alpha={:.2f}".format(finetuning_args.neft_alpha))
if use_gradient_checkpointing and getattr(model, "supports_gradient_checkpointing", False):
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()