Former-commit-id: 416f6333f66b6afd70a3a936d82593efca583235
This commit is contained in:
hiyouga
2024-03-07 16:15:53 +08:00
parent 3de642bffd
commit 9a69cadab3
4 changed files with 41 additions and 30 deletions

View File

@@ -5,7 +5,7 @@ from typing import Any, Dict, Literal, Optional
@dataclass
class ModelArguments:
r"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune.
Arguments pertaining to which model/config/tokenizer we are going to fine-tune or infer.
"""
model_name_or_path: str = field(
@@ -21,31 +21,35 @@ class ModelArguments:
default=None,
metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."},
)
use_fast_tokenizer: Optional[bool] = field(
use_fast_tokenizer: bool = field(
default=False,
metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."},
)
resize_vocab: Optional[bool] = field(
resize_vocab: bool = field(
default=False,
metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."},
)
split_special_tokens: Optional[bool] = field(
split_special_tokens: bool = field(
default=False,
metadata={"help": "Whether or not the special tokens should be split during the tokenization process."},
)
model_revision: Optional[str] = field(
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
low_cpu_mem_usage: bool = field(
default=True,
metadata={"help": "Whether or not to use memory-efficient model loading."},
)
quantization_bit: Optional[int] = field(
default=None,
metadata={"help": "The number of bits to quantize the model."},
metadata={"help": "The number of bits to quantize the model using bitsandbytes."},
)
quantization_type: Optional[Literal["fp4", "nf4"]] = field(
quantization_type: Literal["fp4", "nf4"] = field(
default="nf4",
metadata={"help": "Quantization data type to use in int4 training."},
)
double_quantization: Optional[bool] = field(
double_quantization: bool = field(
default=True,
metadata={"help": "Whether or not to use double quantization in int4 training."},
)
@@ -53,30 +57,34 @@ class ModelArguments:
default=None,
metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."},
)
flash_attn: Optional[bool] = field(
flash_attn: bool = field(
default=False,
metadata={"help": "Enable FlashAttention-2 for faster training."},
)
shift_attn: Optional[bool] = field(
shift_attn: bool = field(
default=False,
metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."},
)
use_unsloth: Optional[bool] = field(
use_unsloth: bool = field(
default=False,
metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."},
)
disable_gradient_checkpointing: Optional[bool] = field(
disable_gradient_checkpointing: bool = field(
default=False,
metadata={"help": "Whether or not to disable gradient checkpointing."},
)
upcast_layernorm: Optional[bool] = field(
upcast_layernorm: bool = field(
default=False,
metadata={"help": "Whether or not to upcast the layernorm weights in fp32."},
)
upcast_lmhead_output: Optional[bool] = field(
upcast_lmhead_output: bool = field(
default=False,
metadata={"help": "Whether or not to upcast the output of lm_head in fp32."},
)
infer_backend: Literal["hf", "vllm"] = field(
default="hf",
metadata={"help": "Backend engine used at inference."},
)
hf_hub_token: Optional[str] = field(
default=None,
metadata={"help": "Auth token to log in with Hugging Face Hub."},
@@ -89,7 +97,7 @@ class ModelArguments:
default=None,
metadata={"help": "Path to the directory to save the exported model."},
)
export_size: Optional[int] = field(
export_size: int = field(
default=1,
metadata={"help": "The file shard size (in GB) of the exported model."},
)
@@ -101,15 +109,15 @@ class ModelArguments:
default=None,
metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."},
)
export_quantization_nsamples: Optional[int] = field(
export_quantization_nsamples: int = field(
default=128,
metadata={"help": "The number of samples used for quantization."},
)
export_quantization_maxlen: Optional[int] = field(
export_quantization_maxlen: int = field(
default=1024,
metadata={"help": "The maximum length of the model inputs used for quantization."},
)
export_legacy_format: Optional[bool] = field(
export_legacy_format: bool = field(
default=False,
metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."},
)
@@ -117,16 +125,15 @@ class ModelArguments:
default=None,
metadata={"help": "The name of the repository if push the model to the Hugging Face hub."},
)
print_param_status: Optional[bool] = field(
print_param_status: bool = field(
default=False,
metadata={"help": "For debugging purposes, print the status of the parameters in the model."},
)
aqlm_optimization: Optional[bool] = field(
default=False, metadata={"help": "Whether or not to optimize the training performance of AQLM models."}
)
def __post_init__(self):
self.aqlm_optimization = None
self.compute_dtype = None
self.device_map = None
self.model_max_length = None
if self.split_special_tokens and self.use_fast_tokenizer: