add unittest

Former-commit-id: 8a1f0c5f922989e08a19c65de0b2c4afd2a5771f
This commit is contained in:
hiyouga
2024-07-19 01:06:27 +08:00
parent 4c1513a845
commit 994b9089e9
16 changed files with 436 additions and 260 deletions

View File

@@ -13,17 +13,18 @@
# limitations under the License.
import os
from typing import Dict, Sequence
import pytest
import torch
from peft import LoraModel, PeftModel
from transformers import AutoModelForCausalLM
from trl import AutoModelForCausalLMWithValueHead
from llamafactory.extras.misc import get_current_device
from llamafactory.hparams import get_infer_args, get_train_args
from llamafactory.model import load_model, load_tokenizer
from llamafactory.train.test_utils import (
check_lora_model,
compare_model,
load_infer_model,
load_reference_model,
load_train_model,
patch_valuehead_model,
)
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
@@ -56,116 +57,38 @@ INFER_ARGS = {
}
def load_reference_model(is_trainable: bool = False) -> "LoraModel":
model = AutoModelForCausalLM.from_pretrained(
TINY_LLAMA, torch_dtype=torch.float16, device_map=get_current_device()
)
lora_model = PeftModel.from_pretrained(model, TINY_LLAMA_ADAPTER, is_trainable=is_trainable)
for param in filter(lambda p: p.requires_grad, lora_model.parameters()):
param.data = param.data.to(torch.float32)
return lora_model
def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module", diff_keys: Sequence[str] = []):
state_dict_a = model_a.state_dict()
state_dict_b = model_b.state_dict()
assert set(state_dict_a.keys()) == set(state_dict_b.keys())
for name in state_dict_a.keys():
if any(key in name for key in diff_keys):
assert torch.allclose(state_dict_a[name], state_dict_b[name], rtol=1e-4, atol=1e-5) is False
else:
assert torch.allclose(state_dict_a[name], state_dict_b[name], rtol=1e-4, atol=1e-5) is True
@pytest.fixture
def fix_valuehead_cpu_loading():
def post_init(self: "AutoModelForCausalLMWithValueHead", state_dict: Dict[str, "torch.Tensor"]):
state_dict = {k[7:]: state_dict[k] for k in state_dict.keys() if k.startswith("v_head.")}
self.v_head.load_state_dict(state_dict, strict=False)
del state_dict
AutoModelForCausalLMWithValueHead.post_init = post_init
patch_valuehead_model()
def test_lora_train_qv_modules():
model_args, _, _, finetuning_args, _ = get_train_args({"lora_target": "q_proj,v_proj", **TRAIN_ARGS})
tokenizer_module = load_tokenizer(model_args)
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
linear_modules = set()
for name, param in model.named_parameters():
if any(module in name for module in ["lora_A", "lora_B"]):
linear_modules.add(name.split(".lora_", maxsplit=1)[0].split(".")[-1])
assert param.requires_grad is True
assert param.dtype == torch.float32
else:
assert param.requires_grad is False
assert param.dtype == torch.float16
model = load_train_model(lora_target="q_proj,v_proj", **TRAIN_ARGS)
linear_modules, _ = check_lora_model(model)
assert linear_modules == {"q_proj", "v_proj"}
def test_lora_train_all_modules():
model_args, _, _, finetuning_args, _ = get_train_args({"lora_target": "all", **TRAIN_ARGS})
tokenizer_module = load_tokenizer(model_args)
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
linear_modules = set()
for name, param in model.named_parameters():
if any(module in name for module in ["lora_A", "lora_B"]):
linear_modules.add(name.split(".lora_", maxsplit=1)[0].split(".")[-1])
assert param.requires_grad is True
assert param.dtype == torch.float32
else:
assert param.requires_grad is False
assert param.dtype == torch.float16
model = load_train_model(lora_target="all", **TRAIN_ARGS)
linear_modules, _ = check_lora_model(model)
assert linear_modules == {"q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj"}
def test_lora_train_extra_modules():
model_args, _, _, finetuning_args, _ = get_train_args(
{"lora_target": "all", "additional_target": "embed_tokens,lm_head", **TRAIN_ARGS}
)
tokenizer_module = load_tokenizer(model_args)
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
extra_modules = set()
for name, param in model.named_parameters():
if any(module in name for module in ["lora_A", "lora_B"]):
assert param.requires_grad is True
assert param.dtype == torch.float32
elif "modules_to_save" in name:
extra_modules.add(name.split(".modules_to_save", maxsplit=1)[0].split(".")[-1])
assert param.requires_grad is True
assert param.dtype == torch.float32
else:
assert param.requires_grad is False
assert param.dtype == torch.float16
model = load_train_model(additional_target="embed_tokens,lm_head", **TRAIN_ARGS)
_, extra_modules = check_lora_model(model)
assert extra_modules == {"embed_tokens", "lm_head"}
def test_lora_train_old_adapters():
model_args, _, _, finetuning_args, _ = get_train_args(
{"adapter_name_or_path": TINY_LLAMA_ADAPTER, "create_new_adapter": False, **TRAIN_ARGS}
)
tokenizer_module = load_tokenizer(model_args)
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
ref_model = load_reference_model(is_trainable=True)
model = load_train_model(adapter_name_or_path=TINY_LLAMA_ADAPTER, create_new_adapter=False, **TRAIN_ARGS)
ref_model = load_reference_model(TINY_LLAMA, TINY_LLAMA_ADAPTER, use_lora=True, is_trainable=True)
compare_model(model, ref_model)
def test_lora_train_new_adapters():
model_args, _, _, finetuning_args, _ = get_train_args(
{"adapter_name_or_path": TINY_LLAMA_ADAPTER, "create_new_adapter": True, **TRAIN_ARGS}
)
tokenizer_module = load_tokenizer(model_args)
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
ref_model = load_reference_model(is_trainable=True)
model = load_train_model(adapter_name_or_path=TINY_LLAMA_ADAPTER, create_new_adapter=True, **TRAIN_ARGS)
ref_model = load_reference_model(TINY_LLAMA, TINY_LLAMA_ADAPTER, use_lora=True, is_trainable=True)
compare_model(
model, ref_model, diff_keys=["q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj"]
)
@@ -173,26 +96,15 @@ def test_lora_train_new_adapters():
@pytest.mark.usefixtures("fix_valuehead_cpu_loading")
def test_lora_train_valuehead():
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS)
tokenizer_module = load_tokenizer(model_args)
model = load_model(
tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True, add_valuehead=True
)
ref_model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(
TINY_LLAMA_VALUEHEAD, torch_dtype=torch.float16, device_map=get_current_device()
)
model = load_train_model(add_valuehead=True, **TRAIN_ARGS)
ref_model = load_reference_model(TINY_LLAMA_VALUEHEAD, is_trainable=True, add_valuehead=True)
state_dict = model.state_dict()
ref_state_dict = ref_model.state_dict()
assert torch.allclose(state_dict["v_head.summary.weight"], ref_state_dict["v_head.summary.weight"])
assert torch.allclose(state_dict["v_head.summary.bias"], ref_state_dict["v_head.summary.bias"])
def test_lora_inference():
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS)
tokenizer_module = load_tokenizer(model_args)
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False)
ref_model = load_reference_model().merge_and_unload()
model = load_infer_model(**INFER_ARGS)
ref_model = load_reference_model(TINY_LLAMA, TINY_LLAMA_ADAPTER, use_lora=True).merge_and_unload()
compare_model(model, ref_model)