add unittest
Former-commit-id: 8a1f0c5f922989e08a19c65de0b2c4afd2a5771f
This commit is contained in:
@@ -16,8 +16,7 @@ import os
|
||||
|
||||
import torch
|
||||
|
||||
from llamafactory.hparams import get_infer_args, get_train_args
|
||||
from llamafactory.model import load_model, load_tokenizer
|
||||
from llamafactory.train.test_utils import load_infer_model, load_train_model
|
||||
|
||||
|
||||
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
|
||||
@@ -46,10 +45,7 @@ INFER_ARGS = {
|
||||
|
||||
|
||||
def test_freeze_train_all_modules():
|
||||
model_args, _, _, finetuning_args, _ = get_train_args({"freeze_trainable_layers": 1, **TRAIN_ARGS})
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
|
||||
|
||||
model = load_train_model(freeze_trainable_layers=1, **TRAIN_ARGS)
|
||||
for name, param in model.named_parameters():
|
||||
if name.startswith("model.layers.1."):
|
||||
assert param.requires_grad is True
|
||||
@@ -60,12 +56,7 @@ def test_freeze_train_all_modules():
|
||||
|
||||
|
||||
def test_freeze_train_extra_modules():
|
||||
model_args, _, _, finetuning_args, _ = get_train_args(
|
||||
{"freeze_trainable_layers": 1, "freeze_extra_modules": "embed_tokens,lm_head", **TRAIN_ARGS}
|
||||
)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
|
||||
|
||||
model = load_train_model(freeze_trainable_layers=1, freeze_extra_modules="embed_tokens,lm_head", **TRAIN_ARGS)
|
||||
for name, param in model.named_parameters():
|
||||
if name.startswith("model.layers.1.") or any(module in name for module in ["embed_tokens", "lm_head"]):
|
||||
assert param.requires_grad is True
|
||||
@@ -76,10 +67,7 @@ def test_freeze_train_extra_modules():
|
||||
|
||||
|
||||
def test_freeze_inference():
|
||||
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False)
|
||||
|
||||
model = load_infer_model(**INFER_ARGS)
|
||||
for param in model.parameters():
|
||||
assert param.requires_grad is False
|
||||
assert param.dtype == torch.float16
|
||||
|
||||
Reference in New Issue
Block a user