add unittest
Former-commit-id: 8a1f0c5f922989e08a19c65de0b2c4afd2a5771f
This commit is contained in:
@@ -13,16 +13,15 @@
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
from typing import Dict
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
from llamafactory.extras.misc import get_current_device
|
||||
from llamafactory.hparams import get_infer_args
|
||||
from llamafactory.model import load_model, load_tokenizer
|
||||
from llamafactory.train.test_utils import (
|
||||
compare_model,
|
||||
load_infer_model,
|
||||
load_reference_model,
|
||||
patch_valuehead_model,
|
||||
)
|
||||
|
||||
|
||||
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
|
||||
@@ -36,45 +35,19 @@ INFER_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module"):
|
||||
state_dict_a = model_a.state_dict()
|
||||
state_dict_b = model_b.state_dict()
|
||||
assert set(state_dict_a.keys()) == set(state_dict_b.keys())
|
||||
for name in state_dict_a.keys():
|
||||
assert torch.allclose(state_dict_a[name], state_dict_b[name], rtol=1e-4, atol=1e-5)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def fix_valuehead_cpu_loading():
|
||||
def post_init(self: "AutoModelForCausalLMWithValueHead", state_dict: Dict[str, "torch.Tensor"]):
|
||||
state_dict = {k[7:]: state_dict[k] for k in state_dict.keys() if k.startswith("v_head.")}
|
||||
self.v_head.load_state_dict(state_dict, strict=False)
|
||||
del state_dict
|
||||
|
||||
AutoModelForCausalLMWithValueHead.post_init = post_init
|
||||
patch_valuehead_model()
|
||||
|
||||
|
||||
def test_base():
|
||||
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False)
|
||||
|
||||
ref_model = AutoModelForCausalLM.from_pretrained(
|
||||
TINY_LLAMA, torch_dtype=torch.float16, device_map=get_current_device()
|
||||
)
|
||||
model = load_infer_model(**INFER_ARGS)
|
||||
ref_model = load_reference_model(TINY_LLAMA)
|
||||
compare_model(model, ref_model)
|
||||
|
||||
|
||||
@pytest.mark.usefixtures("fix_valuehead_cpu_loading")
|
||||
def test_valuehead():
|
||||
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(
|
||||
tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False, add_valuehead=True
|
||||
)
|
||||
|
||||
ref_model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(
|
||||
TINY_LLAMA_VALUEHEAD, torch_dtype=torch.float16, device_map=get_current_device()
|
||||
)
|
||||
ref_model.v_head = ref_model.v_head.to(torch.float16)
|
||||
model = load_infer_model(add_valuehead=True, **INFER_ARGS)
|
||||
ref_model = load_reference_model(TINY_LLAMA_VALUEHEAD, add_valuehead=True)
|
||||
compare_model(model, ref_model)
|
||||
|
||||
Reference in New Issue
Block a user