add unittest
Former-commit-id: 8a1f0c5f922989e08a19c65de0b2c4afd2a5771f
This commit is contained in:
@@ -35,7 +35,6 @@ Dependency graph:
|
||||
transformers==4.41.2 (chatglm)
|
||||
"""
|
||||
|
||||
|
||||
from .cli import VERSION
|
||||
|
||||
|
||||
|
||||
@@ -119,7 +119,9 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
||||
num_training_steps = training_args.max_steps
|
||||
else:
|
||||
total_train_batch_size = backward_batch_size * finetuning_args.ppo_buffer_size * training_args.world_size
|
||||
num_training_steps = training_args.num_train_epochs * math.ceil(len(train_dataset) / total_train_batch_size)
|
||||
num_training_steps = training_args.num_train_epochs * math.ceil(
|
||||
len(train_dataset) / total_train_batch_size
|
||||
)
|
||||
|
||||
optimizer = self.create_optimizer(model, training_args, finetuning_args)
|
||||
scheduler = self.create_scheduler(training_args, num_training_steps, optimizer)
|
||||
|
||||
118
src/llamafactory/train/test_utils.py
Normal file
118
src/llamafactory/train/test_utils.py
Normal file
@@ -0,0 +1,118 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import TYPE_CHECKING, Dict, Optional, Sequence, Set, Tuple, Union
|
||||
|
||||
import torch
|
||||
from peft import PeftModel
|
||||
from transformers import AutoModelForCausalLM
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
from ..data import get_dataset
|
||||
from ..extras.misc import get_current_device
|
||||
from ..hparams import get_infer_args, get_train_args
|
||||
from ..model import load_model, load_tokenizer
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from datasets import Dataset
|
||||
from peft import LoraModel
|
||||
from transformers import PreTrainedModel
|
||||
|
||||
|
||||
def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module", diff_keys: Sequence[str] = []) -> None:
|
||||
state_dict_a = model_a.state_dict()
|
||||
state_dict_b = model_b.state_dict()
|
||||
assert set(state_dict_a.keys()) == set(state_dict_b.keys())
|
||||
for name in state_dict_a.keys():
|
||||
if any(key in name for key in diff_keys):
|
||||
assert torch.allclose(state_dict_a[name], state_dict_b[name], rtol=1e-4, atol=1e-5) is False
|
||||
else:
|
||||
assert torch.allclose(state_dict_a[name], state_dict_b[name], rtol=1e-4, atol=1e-5) is True
|
||||
|
||||
|
||||
def check_lora_model(model: "LoraModel") -> Tuple[Set[str], Set[str]]:
|
||||
linear_modules, extra_modules = set(), set()
|
||||
for name, param in model.named_parameters():
|
||||
if any(module in name for module in ["lora_A", "lora_B"]):
|
||||
linear_modules.add(name.split(".lora_", maxsplit=1)[0].split(".")[-1])
|
||||
assert param.requires_grad is True
|
||||
assert param.dtype == torch.float32
|
||||
elif "modules_to_save" in name:
|
||||
extra_modules.add(name.split(".modules_to_save", maxsplit=1)[0].split(".")[-1])
|
||||
assert param.requires_grad is True
|
||||
assert param.dtype == torch.float32
|
||||
else:
|
||||
assert param.requires_grad is False
|
||||
assert param.dtype == torch.float16
|
||||
|
||||
return linear_modules, extra_modules
|
||||
|
||||
|
||||
def load_train_model(add_valuehead: bool = False, **kwargs) -> "PreTrainedModel":
|
||||
model_args, _, _, finetuning_args, _ = get_train_args(kwargs)
|
||||
tokenizer = load_tokenizer(model_args)["tokenizer"]
|
||||
return load_model(tokenizer, model_args, finetuning_args, is_trainable=True, add_valuehead=add_valuehead)
|
||||
|
||||
|
||||
def load_infer_model(add_valuehead: bool = False, **kwargs) -> "PreTrainedModel":
|
||||
model_args, _, finetuning_args, _ = get_infer_args(kwargs)
|
||||
tokenizer = load_tokenizer(model_args)["tokenizer"]
|
||||
return load_model(tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=add_valuehead)
|
||||
|
||||
|
||||
def load_reference_model(
|
||||
model_path: str,
|
||||
lora_path: Optional[str] = None,
|
||||
use_lora: bool = False,
|
||||
use_pissa: bool = False,
|
||||
is_trainable: bool = False,
|
||||
add_valuehead: bool = False,
|
||||
) -> Union["PreTrainedModel", "LoraModel"]:
|
||||
if add_valuehead:
|
||||
model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(
|
||||
model_path, torch_dtype=torch.float16, device_map=get_current_device()
|
||||
)
|
||||
if not is_trainable:
|
||||
model.v_head = model.v_head.to(torch.float16)
|
||||
|
||||
return model
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path, torch_dtype=torch.float16, device_map=get_current_device()
|
||||
)
|
||||
if use_lora or use_pissa:
|
||||
model = PeftModel.from_pretrained(
|
||||
model, lora_path, subfolder="pissa_init" if use_pissa else None, is_trainable=is_trainable
|
||||
)
|
||||
for param in filter(lambda p: p.requires_grad, model.parameters()):
|
||||
param.data = param.data.to(torch.float32)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def load_train_dataset(**kwargs) -> "Dataset":
|
||||
model_args, data_args, training_args, _, _ = get_train_args(kwargs)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
dataset_module = get_dataset(model_args, data_args, training_args, stage=kwargs["stage"], **tokenizer_module)
|
||||
return dataset_module["train_dataset"]
|
||||
|
||||
|
||||
def patch_valuehead_model():
|
||||
def post_init(self: "AutoModelForCausalLMWithValueHead", state_dict: Dict[str, "torch.Tensor"]) -> None:
|
||||
state_dict = {k[7:]: state_dict[k] for k in state_dict.keys() if k.startswith("v_head.")}
|
||||
self.v_head.load_state_dict(state_dict, strict=False)
|
||||
del state_dict
|
||||
|
||||
AutoModelForCausalLMWithValueHead.post_init = post_init
|
||||
Reference in New Issue
Block a user