Merge branch 'hiyouga:main' into main

Former-commit-id: c25734d874a36222e0a540a2c994bbda73008b27
This commit is contained in:
mMrBun
2024-06-09 18:17:24 +08:00
committed by GitHub
25 changed files with 605 additions and 323 deletions

View File

@@ -701,17 +701,8 @@ _register_template(
_register_template(
name="llama2",
format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]),
format_assistant=StringFormatter(slots=[" {{content}} ", {"eos_token"}]),
format_system=StringFormatter(slots=["<<SYS>>\n{{content}}\n<</SYS>>\n\n"]),
default_system=(
"You are a helpful, respectful and honest assistant. "
"Always answer as helpfully as possible, while being safe. "
"Your answers should not include any harmful, unethical, "
"racist, sexist, toxic, dangerous, or illegal content. "
"Please ensure that your responses are socially unbiased and positive in nature.\n\n"
"If a question does not make any sense, or is not factually coherent, "
"explain why instead of answering something not correct. "
"If you don't know the answer to a question, please don't share false information."
),
)

View File

@@ -35,6 +35,8 @@ IGNORE_INDEX = -100
LAYERNORM_NAMES = {"norm", "ln"}
LLAMABOARD_CONFIG = "llamaboard_config.yaml"
METHODS = ["full", "freeze", "lora"]
MOD_SUPPORTED_MODELS = {"bloom", "falcon", "gemma", "llama", "mistral", "mixtral", "phi", "starcoder2"}
@@ -47,10 +49,10 @@ SUBJECTS = ["Average", "STEM", "Social Sciences", "Humanities", "Other"]
SUPPORTED_MODELS = OrderedDict()
TRAINER_CONFIG = "trainer_config.yaml"
TRAINER_LOG = "trainer_log.jsonl"
TRAINING_ARGS = "training_args.yaml"
TRAINING_STAGES = {
"Supervised Fine-Tuning": "sft",
"Reward Modeling": "rm",

View File

@@ -6,13 +6,10 @@ import peft
import torch
import transformers
import trl
from transformers.integrations import is_deepspeed_available
from transformers.utils import is_bitsandbytes_available, is_torch_cuda_available, is_torch_npu_available
from .packages import is_vllm_available
from transformers.utils import is_torch_cuda_available, is_torch_npu_available
VERSION = "0.7.2.dev0"
VERSION = "0.8.1.dev0"
def print_env() -> None:
@@ -37,19 +34,25 @@ def print_env() -> None:
info["NPU type"] = torch.npu.get_device_name()
info["CANN version"] = torch.version.cann
if is_deepspeed_available():
try:
import deepspeed # type: ignore
info["DeepSpeed version"] = deepspeed.__version__
except Exception:
pass
if is_bitsandbytes_available():
try:
import bitsandbytes
info["Bitsandbytes version"] = bitsandbytes.__version__
except Exception:
pass
if is_vllm_available():
try:
import vllm
info["vLLM version"] = vllm.__version__
except Exception:
pass
print("\n" + "\n".join(["- {}: {}".format(key, value) for key, value in info.items()]) + "\n")

View File

@@ -15,7 +15,12 @@ class ModelArguments:
)
adapter_name_or_path: Optional[str] = field(
default=None,
metadata={"help": "Path to the adapter weight or identifier from huggingface.co/models."},
metadata={
"help": (
"Path to the adapter weight or identifier from huggingface.co/models. "
"Use commas to separate multiple adapters."
)
},
)
cache_dir: Optional[str] = field(
default=None,
@@ -35,7 +40,7 @@ class ModelArguments:
)
new_special_tokens: Optional[str] = field(
default=None,
metadata={"help": "Special tokens to be added into the tokenizer."},
metadata={"help": "Special tokens to be added into the tokenizer. Use commas to separate multiple tokens."},
)
model_revision: str = field(
default="main",

View File

@@ -21,6 +21,218 @@ if TYPE_CHECKING:
logger = get_logger(__name__)
def _setup_full_tuning(
model: "PreTrainedModel",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
cast_trainable_params_to_fp32: bool,
) -> None:
logger.info("Fine-tuning method: Full")
forbidden_modules = set()
if model_args.visual_inputs and finetuning_args.freeze_vision_tower:
forbidden_modules.add("vision_tower")
if model_args.visual_inputs and finetuning_args.train_mm_proj_only:
forbidden_modules.add("language_model")
for name, param in model.named_parameters():
if not any(forbidden_module in name for forbidden_module in forbidden_modules):
if cast_trainable_params_to_fp32:
param.data = param.data.to(torch.float32)
else:
param.requires_grad_(False)
def _setup_freeze_tuning(
model: "PreTrainedModel",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
cast_trainable_params_to_fp32: bool,
) -> None:
logger.info("Fine-tuning method: Freeze")
if model_args.visual_inputs:
config = model.config.text_config
else:
config = model.config
num_layers = (
getattr(config, "num_hidden_layers", None)
or getattr(config, "num_layers", None)
or getattr(config, "n_layer", None)
)
if not num_layers:
raise ValueError("Current model does not support freeze tuning.")
if finetuning_args.use_llama_pro:
if num_layers % finetuning_args.freeze_trainable_layers != 0:
raise ValueError(
"`num_layers` {} should be divisible by `num_layer_trainable` {}.".format(
num_layers, finetuning_args.freeze_trainable_layers
)
)
stride = num_layers // finetuning_args.freeze_trainable_layers
trainable_layer_ids = range(stride - 1, num_layers + stride - 1, stride)
elif finetuning_args.freeze_trainable_layers > 0: # fine-tuning the last n layers if num_layer_trainable > 0
trainable_layer_ids = range(max(0, num_layers - finetuning_args.freeze_trainable_layers), num_layers)
else: # fine-tuning the first n layers if num_layer_trainable < 0
trainable_layer_ids = range(min(-finetuning_args.freeze_trainable_layers, num_layers))
hidden_modules = set()
non_hidden_modules = set()
for name, _ in model.named_parameters():
if ".0." in name:
hidden_modules.add(name.split(".0.")[-1].split(".")[0])
elif ".1." in name: # MoD starts from layer 1
hidden_modules.add(name.split(".1.")[-1].split(".")[0])
if re.search(r"\.\d+\.", name) is None:
non_hidden_modules.add(name.split(".")[-2])
trainable_layers = []
for module_name in finetuning_args.freeze_trainable_modules:
if module_name != "all" and module_name not in hidden_modules:
raise ValueError(
"Module {} is not found, please choose from {}".format(module_name, ", ".join(hidden_modules))
)
for idx in trainable_layer_ids:
trainable_layers.append(".{:d}.{}".format(idx, module_name if module_name != "all" else ""))
if finetuning_args.freeze_extra_modules:
for module_name in finetuning_args.freeze_extra_modules:
if module_name not in non_hidden_modules:
raise ValueError(
"Module {} is not found, please choose from {}".format(module_name, ", ".join(non_hidden_modules))
)
trainable_layers.append(module_name)
forbidden_modules = set()
if model_args.visual_inputs and finetuning_args.freeze_vision_tower:
forbidden_modules.add("vision_tower")
for name, param in model.named_parameters():
if any(trainable_layer in name for trainable_layer in trainable_layers) and not any(
forbidden_module in name for forbidden_module in forbidden_modules
):
if cast_trainable_params_to_fp32:
param.data = param.data.to(torch.float32)
else:
param.requires_grad_(False)
logger.info("Set trainable layers: {}".format(",".join(trainable_layers)))
def _setup_lora_tuning(
config: "PretrainedConfig",
model: "PreTrainedModel",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool,
cast_trainable_params_to_fp32: bool,
) -> "PeftModel":
logger.info("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA"))
adapter_to_resume = None
if model_args.adapter_name_or_path is not None:
is_mergeable = True
if getattr(model, "quantization_method", None): # merge lora in quantized model is unstable
assert len(model_args.adapter_name_or_path) == 1, "Quantized model only accepts a single adapter."
is_mergeable = False
if is_deepspeed_zero3_enabled():
assert len(model_args.adapter_name_or_path) == 1, "Cannot use multiple adapters in DeepSpeed ZeRO-3."
is_mergeable = False
if model_args.use_unsloth:
assert len(model_args.adapter_name_or_path) == 1, "Unsloth model only accepts a single adapter."
is_mergeable = False
if (is_trainable and not finetuning_args.create_new_adapter) or (not is_mergeable):
adapter_to_merge = model_args.adapter_name_or_path[:-1]
adapter_to_resume = model_args.adapter_name_or_path[-1]
else:
adapter_to_merge = model_args.adapter_name_or_path
for adapter in adapter_to_merge:
model: "LoraModel" = PeftModel.from_pretrained(model, adapter, offload_folder=model_args.offload_folder)
model = model.merge_and_unload()
if len(adapter_to_merge) > 0:
logger.info("Merged {} adapter(s).".format(len(adapter_to_merge)))
if adapter_to_resume is not None: # resume lora training
if model_args.use_unsloth:
model = load_unsloth_peft_model(config, model_args, is_trainable=is_trainable)
else:
model = PeftModel.from_pretrained(
model,
adapter_to_resume,
is_trainable=is_trainable,
offload_folder=model_args.offload_folder,
)
if is_trainable and adapter_to_resume is None: # create new lora weights while training
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
target_modules = find_all_linear_modules(model, finetuning_args.freeze_vision_tower)
else:
target_modules = finetuning_args.lora_target
if finetuning_args.use_llama_pro:
target_modules = find_expanded_modules(model, target_modules, finetuning_args.freeze_trainable_layers)
if model_args.visual_inputs and finetuning_args.freeze_vision_tower:
target_modules = "^(?!.*vision_tower).*(?:{}).*".format("|".join(target_modules))
if (
finetuning_args.use_dora
and getattr(model, "quantization_method", None) is not None
and getattr(model, "quantization_method", None) != QuantizationMethod.BITS_AND_BYTES
):
raise ValueError("DoRA is not compatible with PTQ-quantized models.")
if model_args.resize_vocab and finetuning_args.additional_target is None:
input_embeddings = model.get_input_embeddings()
output_embeddings = model.get_output_embeddings()
module_names = set()
for name, module in model.named_modules():
if module in [input_embeddings, output_embeddings]:
module_names.add(name.split(".")[-1])
finetuning_args.additional_target = module_names
logger.warning("Vocab has been resized, add {} to trainable params.".format(",".join(module_names)))
peft_kwargs = {
"r": finetuning_args.lora_rank,
"target_modules": target_modules,
"lora_alpha": finetuning_args.lora_alpha,
"lora_dropout": finetuning_args.lora_dropout,
"use_rslora": finetuning_args.use_rslora,
"modules_to_save": finetuning_args.additional_target,
}
if model_args.use_unsloth:
model = get_unsloth_peft_model(model, model_args, peft_kwargs)
else:
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
use_dora=finetuning_args.use_dora,
**peft_kwargs,
)
model = get_peft_model(model, lora_config)
if is_trainable and cast_trainable_params_to_fp32:
for param in filter(lambda p: p.requires_grad, model.parameters()):
param.data = param.data.to(torch.float32)
if model_args.adapter_name_or_path is not None:
logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
return model
def init_adapter(
config: "PretrainedConfig",
model: "PreTrainedModel",
@@ -35,7 +247,6 @@ def init_adapter(
Note that the trainable parameters must be cast to float32.
"""
if (not is_trainable) and model_args.adapter_name_or_path is None:
logger.info("Adapter is not found at evaluation, load the base model.")
return model
@@ -50,200 +261,15 @@ def init_adapter(
logger.info("Upcasting trainable params to float32.")
cast_trainable_params_to_fp32 = True
if finetuning_args.finetuning_type == "full" and is_trainable:
logger.info("Fine-tuning method: Full")
if is_trainable and finetuning_args.finetuning_type == "full":
_setup_full_tuning(model, model_args, finetuning_args, cast_trainable_params_to_fp32)
forbidden_modules = set()
if model_args.visual_inputs and finetuning_args.freeze_vision_tower:
forbidden_modules.add("vision_tower")
if model_args.visual_inputs and finetuning_args.train_mm_proj_only:
forbidden_modules.add("language_model")
for name, param in model.named_parameters():
if not any(forbidden_module in name for forbidden_module in forbidden_modules):
if cast_trainable_params_to_fp32:
param.data = param.data.to(torch.float32)
else:
param.requires_grad_(False)
if finetuning_args.finetuning_type == "freeze" and is_trainable:
logger.info("Fine-tuning method: Freeze")
if model_args.visual_inputs:
config = model.config.text_config
else:
config = model.config
num_layers = (
getattr(config, "num_hidden_layers", None)
or getattr(config, "num_layers", None)
or getattr(config, "n_layer", None)
)
if not num_layers:
raise ValueError("Current model does not support freeze tuning.")
if finetuning_args.use_llama_pro:
if num_layers % finetuning_args.freeze_trainable_layers != 0:
raise ValueError(
"`num_layers` {} should be divisible by `num_layer_trainable` {}.".format(
num_layers, finetuning_args.freeze_trainable_layers
)
)
stride = num_layers // finetuning_args.freeze_trainable_layers
trainable_layer_ids = range(stride - 1, num_layers + stride - 1, stride)
elif finetuning_args.freeze_trainable_layers > 0: # fine-tuning the last n layers if num_layer_trainable > 0
trainable_layer_ids = range(max(0, num_layers - finetuning_args.freeze_trainable_layers), num_layers)
else: # fine-tuning the first n layers if num_layer_trainable < 0
trainable_layer_ids = range(min(-finetuning_args.freeze_trainable_layers, num_layers))
hidden_modules = set()
non_hidden_modules = set()
for name, _ in model.named_parameters():
if ".0." in name:
hidden_modules.add(name.split(".0.")[-1].split(".")[0])
elif ".1." in name: # MoD starts from layer 1
hidden_modules.add(name.split(".1.")[-1].split(".")[0])
if re.search(r"\.\d+\.", name) is None:
non_hidden_modules.add(name.split(".")[-2])
trainable_layers = []
for module_name in finetuning_args.freeze_trainable_modules:
if module_name != "all" and module_name not in hidden_modules:
raise ValueError(
"Module {} is not found, please choose from {}".format(module_name, ", ".join(hidden_modules))
)
for idx in trainable_layer_ids:
trainable_layers.append(".{:d}.{}".format(idx, module_name if module_name != "all" else ""))
if finetuning_args.freeze_extra_modules:
for module_name in finetuning_args.freeze_extra_modules:
if module_name not in non_hidden_modules:
raise ValueError(
"Module {} is not found, please choose from {}".format(
module_name, ", ".join(non_hidden_modules)
)
)
trainable_layers.append(module_name)
forbidden_modules = set()
if model_args.visual_inputs and finetuning_args.freeze_vision_tower:
forbidden_modules.add("vision_tower")
for name, param in model.named_parameters():
if any(trainable_layer in name for trainable_layer in trainable_layers) and not any(
forbidden_module in name for forbidden_module in forbidden_modules
):
if cast_trainable_params_to_fp32:
param.data = param.data.to(torch.float32)
else:
param.requires_grad_(False)
logger.info("Set trainable layers: {}".format(",".join(map(str, trainable_layer_ids))))
if is_trainable and finetuning_args.finetuning_type == "freeze":
_setup_freeze_tuning(model, model_args, finetuning_args, cast_trainable_params_to_fp32)
if finetuning_args.finetuning_type == "lora":
logger.info("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA"))
adapter_to_resume = None
if model_args.adapter_name_or_path is not None:
is_mergeable = True
if getattr(model, "quantization_method", None): # merge lora in quantized model is unstable
assert len(model_args.adapter_name_or_path) == 1, "Quantized model only accepts a single adapter."
is_mergeable = False
if is_deepspeed_zero3_enabled():
assert len(model_args.adapter_name_or_path) == 1, "Cannot use multiple adapters in DeepSpeed ZeRO-3."
is_mergeable = False
if model_args.use_unsloth:
assert len(model_args.adapter_name_or_path) == 1, "Unsloth model only accepts a single adapter."
is_mergeable = False
if (is_trainable and not finetuning_args.create_new_adapter) or (not is_mergeable):
adapter_to_merge = model_args.adapter_name_or_path[:-1]
adapter_to_resume = model_args.adapter_name_or_path[-1]
else:
adapter_to_merge = model_args.adapter_name_or_path
for adapter in adapter_to_merge:
model: "LoraModel" = PeftModel.from_pretrained(
model, adapter, offload_folder=model_args.offload_folder
)
model = model.merge_and_unload()
if len(adapter_to_merge) > 0:
logger.info("Merged {} adapter(s).".format(len(adapter_to_merge)))
if adapter_to_resume is not None: # resume lora training
if model_args.use_unsloth:
model = load_unsloth_peft_model(config, model_args, is_trainable=is_trainable)
else:
model = PeftModel.from_pretrained(
model,
adapter_to_resume,
is_trainable=is_trainable,
offload_folder=model_args.offload_folder,
)
if is_trainable and adapter_to_resume is None: # create new lora weights while training
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
target_modules = find_all_linear_modules(model, finetuning_args.freeze_vision_tower)
else:
target_modules = finetuning_args.lora_target
if finetuning_args.use_llama_pro:
target_modules = find_expanded_modules(model, target_modules, finetuning_args.freeze_trainable_layers)
if model_args.visual_inputs and finetuning_args.freeze_vision_tower:
target_modules = "^(?!.*vision_tower).*(?:{}).*".format("|".join(target_modules))
if (
finetuning_args.use_dora
and getattr(model, "quantization_method", None) is not None
and getattr(model, "quantization_method", None) != QuantizationMethod.BITS_AND_BYTES
):
raise ValueError("DoRA is not compatible with PTQ-quantized models.")
if model_args.resize_vocab and finetuning_args.additional_target is None:
input_embeddings = model.get_input_embeddings()
output_embeddings = model.get_output_embeddings()
module_names = set()
for name, module in model.named_modules():
if module in [input_embeddings, output_embeddings]:
module_names.add(name.split(".")[-1])
finetuning_args.additional_target = module_names
logger.warning("Vocab has been resized, add {} to trainable params.".format(",".join(module_names)))
peft_kwargs = {
"r": finetuning_args.lora_rank,
"target_modules": target_modules,
"lora_alpha": finetuning_args.lora_alpha,
"lora_dropout": finetuning_args.lora_dropout,
"use_rslora": finetuning_args.use_rslora,
"modules_to_save": finetuning_args.additional_target,
}
if model_args.use_unsloth:
model = get_unsloth_peft_model(model, model_args, peft_kwargs)
else:
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
use_dora=finetuning_args.use_dora,
**peft_kwargs,
)
model = get_peft_model(model, lora_config)
if cast_trainable_params_to_fp32:
for param in filter(lambda p: p.requires_grad, model.parameters()):
param.data = param.data.to(torch.float32)
if model_args.adapter_name_or_path is not None:
logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
model = _setup_lora_tuning(
config, model, model_args, finetuning_args, is_trainable, cast_trainable_params_to_fp32
)
return model

View File

@@ -50,13 +50,6 @@ def get_config_path() -> os.PathLike:
return os.path.join(DEFAULT_CACHE_DIR, USER_CONFIG)
def get_arg_save_path(config_path: str) -> os.PathLike:
r"""
Gets the path to saved arguments.
"""
return os.path.join(DEFAULT_CONFIG_DIR, config_path)
def load_config() -> Dict[str, Any]:
r"""
Loads user config if exists.
@@ -77,24 +70,28 @@ def save_config(lang: str, model_name: Optional[str] = None, model_path: Optiona
user_config["lang"] = lang or user_config["lang"]
if model_name:
user_config["last_model"] = model_name
if model_name and model_path:
user_config["path_dict"][model_name] = model_path
with open(get_config_path(), "w", encoding="utf-8") as f:
safe_dump(user_config, f)
def get_model_path(model_name: str) -> Optional[str]:
def get_model_path(model_name: str) -> str:
r"""
Gets the model path according to the model name.
"""
user_config = load_config()
path_dict: Dict[DownloadSource, str] = SUPPORTED_MODELS.get(model_name, defaultdict(str))
model_path = user_config["path_dict"].get(model_name, None) or path_dict.get(DownloadSource.DEFAULT, None)
path_dict: Dict["DownloadSource", str] = SUPPORTED_MODELS.get(model_name, defaultdict(str))
model_path = user_config["path_dict"].get(model_name, "") or path_dict.get(DownloadSource.DEFAULT, "")
if (
use_modelscope()
and path_dict.get(DownloadSource.MODELSCOPE)
and model_path == path_dict.get(DownloadSource.DEFAULT)
): # replace path
model_path = path_dict.get(DownloadSource.MODELSCOPE)
return model_path

View File

@@ -36,7 +36,8 @@ def create_top() -> Dict[str, "Component"]:
visual_inputs = gr.Checkbox(scale=1)
model_name.change(get_model_info, [model_name], [model_path, template, visual_inputs], queue=False)
model_path.change(save_config, inputs=[lang, model_name, model_path], queue=False)
model_name.input(save_config, inputs=[lang, model_name], queue=False)
model_path.input(save_config, inputs=[lang, model_name, model_path], queue=False)
finetuning_type.change(can_quantize, [finetuning_type], [quantization_bit], queue=False)
checkpoint_path.focus(list_checkpoints, [model_name, finetuning_type], [checkpoint_path], queue=False)

View File

@@ -6,7 +6,7 @@ from ...extras.constants import TRAINING_STAGES
from ...extras.misc import get_device_count
from ...extras.packages import is_gradio_available
from ..common import DEFAULT_DATA_DIR, list_checkpoints, list_datasets
from ..utils import change_stage, check_output_dir, list_config_paths, list_output_dirs
from ..utils import change_stage, list_config_paths, list_output_dirs
from .data import create_preview_box
@@ -319,7 +319,13 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
finetuning_type.change(list_output_dirs, [model_name, finetuning_type, current_time], [output_dir], queue=False)
output_dir.change(
list_output_dirs, [model_name, finetuning_type, current_time], [output_dir], concurrency_limit=None
).then(check_output_dir, inputs=[lang, model_name, finetuning_type, output_dir], concurrency_limit=None)
)
output_dir.input(
engine.runner.check_output_dir,
[lang, model_name, finetuning_type, output_dir],
list(input_elems) + [output_box],
concurrency_limit=None,
)
config_path.change(list_config_paths, [current_time], [config_path], queue=False)
return elem_dict

View File

@@ -5,11 +5,11 @@ from typing import TYPE_CHECKING, Any, Dict, Generator, Optional
from transformers.trainer import TRAINING_ARGS_NAME
from ..extras.constants import PEFT_METHODS, TRAINING_STAGES
from ..extras.constants import LLAMABOARD_CONFIG, PEFT_METHODS, TRAINING_STAGES
from ..extras.misc import is_gpu_or_npu_available, torch_gc
from ..extras.packages import is_gradio_available
from .common import DEFAULT_CACHE_DIR, get_save_dir, load_config
from .locales import ALERTS
from .common import DEFAULT_CACHE_DIR, DEFAULT_CONFIG_DIR, get_save_dir, load_config
from .locales import ALERTS, LOCALES
from .utils import abort_leaf_process, gen_cmd, get_eval_results, get_trainer_info, load_args, save_args, save_cmd
@@ -276,6 +276,10 @@ class Runner:
else:
self.do_train, self.running_data = do_train, data
args = self._parse_train_args(data) if do_train else self._parse_eval_args(data)
os.makedirs(args["output_dir"], exist_ok=True)
save_args(os.path.join(args["output_dir"], LLAMABOARD_CONFIG), self._form_config_dict(data))
env = deepcopy(os.environ)
env["LLAMABOARD_ENABLED"] = "1"
if args.get("deepspeed", None) is not None:
@@ -284,6 +288,16 @@ class Runner:
self.trainer = Popen("llamafactory-cli train {}".format(save_cmd(args)), env=env, shell=True)
yield from self.monitor()
def _form_config_dict(self, data: Dict["Component", Any]) -> Dict[str, Any]:
config_dict = {}
skip_ids = ["top.lang", "top.model_path", "train.output_dir", "train.config_path", "train.device_count"]
for elem, value in data.items():
elem_id = self.manager.get_id_by_elem(elem)
if elem_id not in skip_ids:
config_dict[elem_id] = value
return config_dict
def preview_train(self, data):
yield from self._preview(data, do_train=True)
@@ -349,28 +363,24 @@ class Runner:
}
yield return_dict
def save_args(self, data: dict):
def save_args(self, data):
output_box = self.manager.get_elem_by_id("train.output_box")
error = self._initialize(data, do_train=True, from_preview=True)
if error:
gr.Warning(error)
return {output_box: error}
config_dict: Dict[str, Any] = {}
lang = data[self.manager.get_elem_by_id("top.lang")]
config_path = data[self.manager.get_elem_by_id("train.config_path")]
skip_ids = ["top.lang", "top.model_path", "train.output_dir", "train.config_path", "train.device_count"]
for elem, value in data.items():
elem_id = self.manager.get_id_by_elem(elem)
if elem_id not in skip_ids:
config_dict[elem_id] = value
os.makedirs(DEFAULT_CONFIG_DIR, exist_ok=True)
save_path = os.path.join(DEFAULT_CONFIG_DIR, config_path)
save_path = save_args(config_path, config_dict)
save_args(save_path, self._form_config_dict(data))
return {output_box: ALERTS["info_config_saved"][lang] + save_path}
def load_args(self, lang: str, config_path: str):
output_box = self.manager.get_elem_by_id("train.output_box")
config_dict = load_args(config_path)
config_dict = load_args(os.path.join(DEFAULT_CONFIG_DIR, config_path))
if config_dict is None:
gr.Warning(ALERTS["err_config_not_found"][lang])
return {output_box: ALERTS["err_config_not_found"][lang]}
@@ -380,3 +390,17 @@ class Runner:
output_dict[self.manager.get_elem_by_id(elem_id)] = value
return output_dict
def check_output_dir(self, lang: str, model_name: str, finetuning_type: str, output_dir: str):
output_box = self.manager.get_elem_by_id("train.output_box")
output_dict: Dict["Component", Any] = {output_box: LOCALES["output_box"][lang]["value"]}
if model_name and output_dir and os.path.isdir(get_save_dir(model_name, finetuning_type, output_dir)):
gr.Warning(ALERTS["warn_output_dir_exists"][lang])
output_dict[output_box] = ALERTS["warn_output_dir_exists"][lang]
output_dir = get_save_dir(model_name, finetuning_type, output_dir)
config_dict = load_args(os.path.join(output_dir, LLAMABOARD_CONFIG)) # load llamaboard config
for elem_id, value in config_dict.items():
output_dict[self.manager.get_elem_by_id(elem_id)] = value
return output_dict

View File

@@ -8,10 +8,10 @@ import psutil
from transformers.trainer_utils import get_last_checkpoint
from yaml import safe_dump, safe_load
from ..extras.constants import PEFT_METHODS, RUNNING_LOG, TRAINER_CONFIG, TRAINER_LOG, TRAINING_STAGES
from ..extras.constants import PEFT_METHODS, RUNNING_LOG, TRAINER_LOG, TRAINING_ARGS, TRAINING_STAGES
from ..extras.packages import is_gradio_available, is_matplotlib_available
from ..extras.ploting import gen_loss_plot
from .common import DEFAULT_CACHE_DIR, DEFAULT_CONFIG_DIR, get_arg_save_path, get_save_dir
from .common import DEFAULT_CACHE_DIR, DEFAULT_CONFIG_DIR, get_save_dir
from .locales import ALERTS
@@ -93,10 +93,10 @@ def save_cmd(args: Dict[str, Any]) -> str:
output_dir = args["output_dir"]
os.makedirs(output_dir, exist_ok=True)
with open(os.path.join(output_dir, TRAINER_CONFIG), "w", encoding="utf-8") as f:
with open(os.path.join(output_dir, TRAINING_ARGS), "w", encoding="utf-8") as f:
safe_dump(clean_cmd(args), f)
return os.path.join(output_dir, TRAINER_CONFIG)
return os.path.join(output_dir, TRAINING_ARGS)
def get_eval_results(path: os.PathLike) -> str:
@@ -157,22 +157,19 @@ def load_args(config_path: str) -> Optional[Dict[str, Any]]:
Loads saved arguments.
"""
try:
with open(get_arg_save_path(config_path), "r", encoding="utf-8") as f:
with open(config_path, "r", encoding="utf-8") as f:
return safe_load(f)
except Exception:
return None
def save_args(config_path: str, config_dict: Dict[str, Any]) -> str:
def save_args(config_path: str, config_dict: Dict[str, Any]):
r"""
Saves arguments.
"""
os.makedirs(DEFAULT_CONFIG_DIR, exist_ok=True)
with open(get_arg_save_path(config_path), "w", encoding="utf-8") as f:
with open(config_path, "w", encoding="utf-8") as f:
safe_dump(config_dict, f)
return str(get_arg_save_path(config_path))
def list_config_paths(current_time: str) -> "gr.Dropdown":
r"""
@@ -181,13 +178,13 @@ def list_config_paths(current_time: str) -> "gr.Dropdown":
config_files = ["{}.yaml".format(current_time)]
if os.path.isdir(DEFAULT_CONFIG_DIR):
for file_name in os.listdir(DEFAULT_CONFIG_DIR):
if file_name.endswith(".yaml"):
if file_name.endswith(".yaml") and file_name not in config_files:
config_files.append(file_name)
return gr.Dropdown(choices=config_files)
def list_output_dirs(model_name: str, finetuning_type: str, current_time: str) -> "gr.Dropdown":
def list_output_dirs(model_name: Optional[str], finetuning_type: str, current_time: str) -> "gr.Dropdown":
r"""
Lists all the directories that can resume from.
"""
@@ -203,14 +200,6 @@ def list_output_dirs(model_name: str, finetuning_type: str, current_time: str) -
return gr.Dropdown(choices=output_dirs)
def check_output_dir(lang: str, model_name: str, finetuning_type: str, output_dir: str) -> None:
r"""
Check if output dir exists.
"""
if model_name and output_dir and os.path.isdir(get_save_dir(model_name, finetuning_type, output_dir)):
gr.Warning(ALERTS["warn_output_dir_exists"][lang])
def create_ds_config() -> None:
r"""
Creates deepspeed config.