[train] KTransformers SFT as backend engine for LLaMA-Factory (#9400)
Co-authored-by: jimmy128 <jimmy128@noreply.gitcode.com> Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
This commit is contained in:
52
examples/train_lora/deepseek2_lora_sft_kt.yaml
Normal file
52
examples/train_lora/deepseek2_lora_sft_kt.yaml
Normal file
@@ -0,0 +1,52 @@
|
||||
### model
|
||||
model_name_or_path: deepseek-ai/DeepSeek-V2-Lite
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: identity
|
||||
template: deepseek
|
||||
cutoff_len: 2048
|
||||
max_samples: 100000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
dataloader_num_workers: 4
|
||||
|
||||
### output
|
||||
output_dir: saves/Kllama_deepseekV2
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
save_only_model: false
|
||||
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
bf16: true
|
||||
ddp_timeout: 180000000
|
||||
resume_from_checkpoint: null
|
||||
|
||||
### ktransformers
|
||||
use_kt: true # use KTransformers as LoRA sft backend
|
||||
kt_optimize_rule: examples/kt_optimize_rules/DeepSeek-V2-Lite-Chat-sft-amx.yaml
|
||||
cpu_infer: 32
|
||||
chunk_size: 8192
|
||||
|
||||
### eval
|
||||
# eval_dataset: alpaca_en_demo
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
52
examples/train_lora/deepseek3_lora_sft_kt.yaml
Normal file
52
examples/train_lora/deepseek3_lora_sft_kt.yaml
Normal file
@@ -0,0 +1,52 @@
|
||||
### model
|
||||
model_name_or_path: opensourcerelease/DeepSeek-V3-bf16
|
||||
trust_remote_code: true
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_rank: 8
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: identity
|
||||
template: deepseek
|
||||
cutoff_len: 2048
|
||||
max_samples: 100000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
dataloader_num_workers: 4
|
||||
|
||||
### output
|
||||
output_dir: saves/Kllama_deepseekV3
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
save_only_model: false
|
||||
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
bf16: true
|
||||
ddp_timeout: 180000000
|
||||
resume_from_checkpoint: null
|
||||
|
||||
### ktransformers
|
||||
use_kt: true # use KTransformers as LoRA sft backend
|
||||
kt_optimize_rule: examples/kt_optimize_rules/DeepSeek-V3-Chat-sft-amx-multi-gpu.yaml
|
||||
cpu_infer: 32
|
||||
chunk_size: 8192
|
||||
|
||||
### eval
|
||||
# eval_dataset: alpaca_en_demo
|
||||
# val_size: 0.1
|
||||
# per_device_eval_batch_size: 1
|
||||
# eval_strategy: steps
|
||||
# eval_steps: 500
|
||||
Reference in New Issue
Block a user