add regex of only tune lm and mm_proj

Former-commit-id: 38d540b3e69bceabafafab524fcfc78aeb05612d
This commit is contained in:
BUAADreamer
2024-05-27 18:59:00 +08:00
parent 11fcd055ec
commit 932f0d5c20
6 changed files with 151 additions and 6 deletions

View File

@@ -10,6 +10,7 @@ from ..extras.logging import get_logger
from .utils.misc import find_all_linear_modules, find_expanded_modules
from .utils.quantization import QuantizationMethod
from .utils.unsloth import get_unsloth_peft_model, load_unsloth_peft_model
from .utils.visual import filter_vision_tower_linear
if TYPE_CHECKING:
@@ -58,6 +59,9 @@ def init_adapter(
if model_args.visual_inputs and hasattr(model, "vision_tower"): # freeze vision model
model.vision_tower.requires_grad_(False)
if model_args.visual_inputs and hasattr(model, "language_model") and model_args.tune_mm_proj: # freeze language model if only tune mm_proj
model.language_model.requires_grad_(False)
if finetuning_args.finetuning_type == "freeze" and is_trainable:
logger.info("Fine-tuning method: Freeze")
num_layers = (
@@ -180,6 +184,9 @@ def init_adapter(
if finetuning_args.use_llama_pro:
target_modules = find_expanded_modules(model, target_modules, finetuning_args.num_layer_trainable)
if model_args.visual_inputs:
target_modules = filter_vision_tower_linear(target_modules)
if (
finetuning_args.use_dora
and getattr(model, "quantization_method", None) is not None

View File

@@ -163,11 +163,6 @@ def load_model(
else:
model.train()
if model_args.visual_inputs and model_args.tune_mm_proj:
lm_params = [param for name, param in model.named_parameters() if "language_model" in name]
for param in lm_params:
param.requires_grad_(False)
trainable_params, all_param = count_parameters(model)
if is_trainable:
param_stats = "trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(

View File

@@ -1,4 +1,4 @@
from typing import TYPE_CHECKING, Tuple
from typing import TYPE_CHECKING, Tuple, List
import torch
import transformers.models
@@ -82,3 +82,8 @@ def configure_visual_model(config: "PretrainedConfig") -> None:
if getattr(config, "is_yi_vl_derived_model", None):
logger.info("Detected Yi-VL model, applying projector patch.")
transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVL
def filter_vision_tower_linear(target_modules: List[str]) -> str:
target_modules = f"^(?!.*vision_tower).*(?:{'|'.join(target_modules)}).*"
return target_modules