[model] support audio (#6701)

* support qwen2_audio

* improve code

* lint

* fix

* fix

* fix

---------

Co-authored-by: hiyouga <hiyouga@buaa.edu.cn>
Former-commit-id: 5eacb5629e4d7733cd992a63747a1335f2c6a929
This commit is contained in:
Zhangchi Feng
2025-02-05 04:59:09 +08:00
committed by GitHub
parent 9feb78e7b4
commit 8f401e37f8
35 changed files with 675 additions and 213 deletions

View File

@@ -9,8 +9,17 @@ import torch
from transformers.image_utils import get_image_size, to_numpy_array
from typing_extensions import override
from ..extras.constants import IGNORE_INDEX, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER
from ..extras.packages import is_pillow_available, is_pyav_available, is_transformers_version_greater_than
from ..extras.constants import AUDIO_PLACEHOLDER, IGNORE_INDEX, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER
from ..extras.packages import (
is_librosa_available,
is_pillow_available,
is_pyav_available,
is_transformers_version_greater_than,
)
if is_librosa_available():
import librosa
if is_pillow_available():
@@ -31,7 +40,9 @@ if is_transformers_version_greater_than("4.45.0"):
if TYPE_CHECKING:
from av.stream import Stream
from numpy.typing import NDArray
from transformers import PreTrainedTokenizer, ProcessorMixin
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
from transformers.image_processing_utils import BaseImageProcessor
class EncodedImage(TypedDict):
@@ -40,6 +51,7 @@ if TYPE_CHECKING:
ImageInput = Union[str, bytes, EncodedImage, ImageObject]
VideoInput = str
AudioInput = Union[str, NDArray]
def _get_paligemma_token_type_ids(
@@ -60,15 +72,17 @@ def _get_paligemma_token_type_ids(
class BasePlugin:
def __init__(self, image_token: Optional[str], video_token: Optional[str]) -> None:
def __init__(self, image_token: Optional[str], video_token: Optional[str], audio_token: Optional[str]) -> None:
self.image_token = image_token
self.video_token = video_token
self.audio_token = audio_token
self.expand_mm_tokens = True
def _validate_input(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
) -> None:
r"""
Validates if this model accepts the input modalities.
@@ -83,11 +97,16 @@ class BasePlugin:
"This model does not support video input. Please check whether the correct `template` is used."
)
if len(audios) != 0 and self.audio_token is None:
raise ValueError(
"This model does not support audio input. Please check whether the correct `template` is used."
)
def _preprocess_image(self, image: "ImageObject", **kwargs) -> "ImageObject":
r"""
Pre-processes a single image.
"""
image_resolution: int = kwargs.get("image_resolution")
image_resolution: int = kwargs["image_resolution"]
if (image.width * image.height) > image_resolution:
resize_factor = math.sqrt(image_resolution / (image.width * image.height))
width, height = int(image.width * resize_factor), int(image.height * resize_factor)
@@ -102,8 +121,8 @@ class BasePlugin:
r"""
Computes video sample frames according to fps.
"""
video_fps: float = kwargs.get("video_fps")
video_maxlen: int = kwargs.get("video_maxlen")
video_fps: float = kwargs["video_fps"]
video_maxlen: int = kwargs["video_maxlen"]
total_frames = video_stream.frames
sample_frames = float(video_stream.duration * video_stream.time_base) * video_fps
sample_frames = min(total_frames, video_maxlen, sample_frames)
@@ -126,7 +145,7 @@ class BasePlugin:
image = Image.open(image["path"])
if not isinstance(image, ImageObject):
raise ValueError(f"Expect input is a list of Images, but got {type(image)}.")
raise ValueError(f"Expect input is a list of images, but got {type(image)}.")
results.append(self._preprocess_image(image, **kwargs))
@@ -154,10 +173,28 @@ class BasePlugin:
return results
def _regularize_audios(self, audios: Sequence["AudioInput"], **kwargs) -> List["NDArray"]:
r"""
Regularizes audios to avoid error. Including reading and resampling.
"""
results = []
sampling_rate = kwargs["sampling_rate"]
for audio in audios:
if isinstance(audio, str):
audio = librosa.load(audio, sr=sampling_rate)[0]
if not isinstance(audio, np.ndarray):
raise ValueError(f"Expect input is a list of audios, but got {type(audio)}.")
results.append(audio)
return results
def _get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: "ProcessorMixin",
) -> Dict[str, "torch.Tensor"]:
r"""
@@ -172,15 +209,17 @@ class BasePlugin:
It holds num_patches == torch.prod(image_grid_thw)
"""
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor", None)
video_processor: "BaseImageProcessor" = getattr(processor, "video_processor", image_processor)
input_dict = {"images": None} # default key
feature_extractor: "SequenceFeatureExtractor" = getattr(processor, "feature_extractor", None)
mm_inputs = {}
if len(images) != 0:
images = self._regularize_images(
images,
image_resolution=getattr(processor, "image_resolution", 768 * 768),
)
input_dict["images"] = images
mm_inputs.update(image_processor(images, return_tensors="pt"))
if len(videos) != 0:
videos = self._regularize_videos(
@@ -189,16 +228,23 @@ class BasePlugin:
video_fps=getattr(processor, "video_fps", 2.0),
video_maxlen=getattr(processor, "video_maxlen", 128),
)
input_dict["videos"] = videos
mm_inputs.update(video_processor(videos, return_tensors="pt"))
mm_inputs = {}
if image_processor != video_processor:
if input_dict.get("images") is not None:
mm_inputs.update(image_processor(input_dict["images"], return_tensors="pt"))
if input_dict.get("videos") is not None:
mm_inputs.update(video_processor(input_dict["videos"], return_tensors="pt"))
elif input_dict.get("images") is not None or input_dict.get("videos") is not None: # same processor (qwen2-vl)
mm_inputs.update(image_processor(**input_dict, return_tensors="pt"))
if len(audios) != 0:
audios = self._regularize_audios(
audios,
sampling_rate=getattr(feature_extractor, "sampling_rate", 16000),
)
mm_inputs.update(
feature_extractor(
audios,
sampling_rate=getattr(feature_extractor, "sampling_rate", 16000),
return_attention_mask=True,
padding="max_length",
return_tensors="pt",
)
)
mm_inputs["feature_attention_mask"] = mm_inputs.pop("attention_mask") # prevent conflicts
return mm_inputs
@@ -207,12 +253,13 @@ class BasePlugin:
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
r"""
Pre-processes input messages before tokenization for VLMs.
"""
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
return messages
def process_token_ids(
@@ -221,21 +268,24 @@ class BasePlugin:
labels: Optional[List[int]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
) -> Tuple[List[int], Optional[List[int]]]:
r"""
Pre-processes token ids after tokenization for VLMs.
"""
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
return input_ids, labels
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
@@ -247,10 +297,11 @@ class BasePlugin:
videos: a list of video inputs, shape (num_videos,)
imglens: number of images in each sample, shape (batch_size,)
vidlens: number of videos in each sample, shape (batch_size,)
audlens: number of audios in each sample, shape (batch_size,)
batch_ids: token ids of input samples, shape (batch_size, seq_len)
processor: a processor for pre-processing images and videos
"""
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
return {}
@@ -261,9 +312,10 @@ class LlavaPlugin(BasePlugin):
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
num_image_tokens = 0
image_seqlen = getattr(processor, "image_seqlen") if self.expand_mm_tokens else 1
messages = deepcopy(messages)
@@ -285,13 +337,15 @@ class LlavaPlugin(BasePlugin):
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
return self._get_mm_inputs(images, videos, processor)
self._validate_input(images, videos, audios)
return self._get_mm_inputs(images, videos, audios, processor)
class LlavaNextPlugin(BasePlugin):
@@ -301,12 +355,13 @@ class LlavaNextPlugin(BasePlugin):
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
num_image_tokens = 0
messages = deepcopy(messages)
mm_inputs = self._get_mm_inputs(images, videos, processor)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
if "image_sizes" in mm_inputs:
image_sizes = iter(mm_inputs["image_sizes"])
@@ -339,13 +394,15 @@ class LlavaNextPlugin(BasePlugin):
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
return self._get_mm_inputs(images, videos, processor)
self._validate_input(images, videos, audios)
return self._get_mm_inputs(images, videos, audios, processor)
class LlavaNextVideoPlugin(BasePlugin):
@@ -355,12 +412,13 @@ class LlavaNextVideoPlugin(BasePlugin):
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
num_image_tokens, num_video_tokens = 0, 0
messages = deepcopy(messages)
mm_inputs = self._get_mm_inputs(images, videos, processor)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
if "pixel_values" in mm_inputs:
image_sizes = iter(mm_inputs["image_sizes"])
height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0][0]))
@@ -408,13 +466,15 @@ class LlavaNextVideoPlugin(BasePlugin):
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
return self._get_mm_inputs(images, videos, processor)
self._validate_input(images, videos, audios)
return self._get_mm_inputs(images, videos, audios, processor)
class MiniCPMVPlugin(BasePlugin):
@@ -424,26 +484,30 @@ class MiniCPMVPlugin(BasePlugin):
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
num_image_tokens = 0
num_video_tokens = 0
num_audio_tokens = 0
messages = deepcopy(messages)
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
mm_inputs = {}
audio_inputs = {}
audio_parts = []
if len(images) != 0 and len(videos) != 0:
raise ValueError("MiniCPM-V model does not support input images and videos at the same time.")
if len(videos) != 0:
max_slice_nums = 2
use_image_id = False
mm_inputs = self._get_mm_inputs([], videos, processor)
mm_inputs = self._get_mm_inputs([], videos, [], processor)
else:
max_slice_nums = image_processor.max_slice_nums
use_image_id = image_processor.use_image_id
for message in messages:
for i, message in enumerate(messages):
content = message["content"]
while IMAGE_PLACEHOLDER in content:
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
@@ -454,15 +518,25 @@ class MiniCPMVPlugin(BasePlugin):
content = content.replace(VIDEO_PLACEHOLDER, "{{image}}" * video_seqlen, 1)
num_video_tokens += 1
message["content"] = content.replace("{{image}}", "(<image>./</image>)")
while AUDIO_PLACEHOLDER in content:
audio_parts.append(i)
content = content.replace(AUDIO_PLACEHOLDER, "{{audio}}", 1)
num_audio_tokens += 1
message["content"] = content.replace("{{image}}", "(<image>./</image>)").replace(
"{{audio}}", "(<audio>./</audio>)"
)
if num_image_tokens > 0:
mm_inputs = self._get_mm_inputs(images, [], processor)
mm_inputs = self._get_mm_inputs(images, [], [], processor)
if num_audio_tokens > 0:
audio_parts_ls = [audio_parts]
audio_inputs = self._get_mm_inputs([], [], audios, processor, audio_parts_ls=audio_parts_ls, ret_phs=True)
if mm_inputs:
pattern = "(<image>./</image>)"
image_sizes = mm_inputs["image_sizes"]
for index, message in enumerate(messages):
text = message["content"]
image_tags = re.findall(pattern, text)
@@ -480,12 +554,29 @@ class MiniCPMVPlugin(BasePlugin):
final_text += text_chunks[-1]
messages[index]["content"] = final_text
if audio_inputs:
pattern = "(<audio>./</audio>)"
for index, message in enumerate(messages):
text = message["content"]
audio_tags = re.findall(pattern, text)
text_chunks = text.split(pattern)
final_text = ""
for i in range(len(audio_tags)):
audio_placeholder = audio_inputs["audio_phs"][0][i]
final_text = final_text + text_chunks[i] + audio_placeholder
final_text += text_chunks[-1]
messages[index]["content"] = final_text
if len(images) != num_image_tokens:
raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.")
if len(videos) != num_video_tokens:
raise ValueError(f"The number of videos does not match the number of {VIDEO_PLACEHOLDER} tokens.")
if len(audios) != num_audio_tokens:
raise ValueError(f"The number of audios does not match the number of {AUDIO_PLACEHOLDER} tokens.")
return messages
@override
@@ -493,6 +584,7 @@ class MiniCPMVPlugin(BasePlugin):
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: "ProcessorMixin",
**kwargs,
) -> Dict[str, "torch.Tensor"]:
@@ -528,6 +620,30 @@ class MiniCPMVPlugin(BasePlugin):
video_inputs = image_processor(videos, do_pad=True, max_slice_nums=2, return_tensors="pt")
mm_inputs.update(video_inputs)
if len(audios) != 0:
audio_parts_ls = kwargs.get("audio_parts_ls", None)
new_audios = []
for audio in audios:
if not isinstance(audio, np.ndarray):
audio = librosa.load(audio, sr=processor.feature_extractor.sampling_rate)[0]
new_audios.append(audio)
audios_ls = []
idx = 0
for audio_parts in audio_parts_ls:
audios_ls.append(new_audios[idx : idx + len(audio_parts)])
idx += len(audio_parts)
audio_features, audio_feature_lens, audio_phs = processor.audio_feature_extract(
audios_ls,
audio_parts_ls,
chunk_input=True,
sampling_rate=16000,
)
mm_inputs.update({"audio_features": audio_features, "audio_feature_lens": audio_feature_lens})
if kwargs.get("ret_phs", False):
mm_inputs.update({"audio_phs": audio_phs})
return mm_inputs
@override
@@ -535,12 +651,16 @@ class MiniCPMVPlugin(BasePlugin):
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
# image bound
image_bounds_list = []
valid_image_nums_ls = []
for i, input_ids in enumerate(batch_ids):
@@ -561,8 +681,38 @@ class MiniCPMVPlugin(BasePlugin):
)
image_bounds_list.append(image_bounds)
mm_inputs = self._get_mm_inputs(images, videos, processor, valid_image_nums_ls=valid_image_nums_ls)
mm_inputs = self._get_mm_inputs(images, videos, [], processor, valid_image_nums_ls=valid_image_nums_ls)
if "tgt_sizes" not in mm_inputs:
dummy_data = [torch.empty(0) for _ in range(len(batch_ids))]
mm_inputs.update({"tgt_sizes": dummy_data, "pixel_values": dummy_data, "image_sizes": dummy_data})
mm_inputs.update({"image_bound": image_bounds_list})
if len(audios) > 0:
# audio bound
audio_bounds_ls = []
spk_bounds_ls = []
audio_parts_ls = []
for input_ids, audiolen in zip(batch_ids, audlens):
input_ids_ = torch.tensor(input_ids)
audio_start_idx = torch.where(input_ids_ == processor.tokenizer.audio_start_id)[0]
audio_end_idx = torch.where(input_ids_ == processor.tokenizer.audio_end_id)[0]
assert len(audio_start_idx) == len(audio_end_idx)
audio_bounds = torch.hstack([(audio_start_idx + 1).unsqueeze(-1), audio_end_idx.unsqueeze(-1)])
audio_bounds_ls.append(audio_bounds)
audio_parts_ls.append(list(range(audiolen)))
spk_start_idx = torch.where(input_ids_ == processor.tokenizer.spk_start_id)[0]
spk_end_idx = torch.where(input_ids_ == processor.tokenizer.spk_end_id)[0]
assert len(spk_start_idx) == len(spk_end_idx)
spk_bounds = torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)])
spk_bounds_ls.append(spk_bounds)
audio_inputs = self._get_mm_inputs([], [], audios, processor, audio_parts_ls=audio_parts_ls)
mm_inputs.update(audio_inputs)
mm_inputs.update({"audio_bounds": audio_bounds_ls, "spk_bounds": spk_bounds_ls})
return mm_inputs
@@ -573,9 +723,10 @@ class MllamaPlugin(BasePlugin):
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
num_image_tokens = 0
messages = deepcopy(messages)
for message in messages:
@@ -593,6 +744,7 @@ class MllamaPlugin(BasePlugin):
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: "ProcessorMixin",
**kwargs,
) -> Dict[str, "torch.Tensor"]:
@@ -617,17 +769,20 @@ class MllamaPlugin(BasePlugin):
return image_processor(batch_images, return_tensors="pt")
@override
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
mm_inputs = self._get_mm_inputs(images, videos, processor, imglens=imglens)
self._validate_input(images, videos, audios)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor, imglens=imglens)
num_tiles = mm_inputs.pop("num_tiles")
image_token_id = getattr(processor, "image_token_id")
max_image_tiles = getattr(processor.image_processor, "max_image_tiles")
@@ -652,9 +807,10 @@ class PaliGemmaPlugin(BasePlugin):
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
num_image_tokens = 0
messages = deepcopy(messages)
for message in messages:
@@ -677,10 +833,11 @@ class PaliGemmaPlugin(BasePlugin):
labels: Optional[List[int]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
) -> Tuple[List[int], Optional[List[int]]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
num_images = len(images)
image_seqlen = num_images * getattr(processor, "image_seqlen") if self.expand_mm_tokens else 0 # skip mm token
image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
@@ -695,14 +852,16 @@ class PaliGemmaPlugin(BasePlugin):
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
seqlens = [len(input_ids) for input_ids in batch_ids]
mm_inputs = self._get_mm_inputs(images, videos, processor)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
mm_inputs["token_type_ids"] = _get_paligemma_token_type_ids(imglens, seqlens, processor)
return mm_inputs
@@ -714,9 +873,10 @@ class PixtralPlugin(BasePlugin):
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
patch_size = getattr(processor, "patch_size")
image_token = getattr(processor, "image_token")
image_break_token = getattr(processor, "image_break_token")
@@ -724,7 +884,7 @@ class PixtralPlugin(BasePlugin):
num_image_tokens = 0
messages = deepcopy(messages)
mm_inputs = self._get_mm_inputs(images, videos, processor)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
image_input_sizes = mm_inputs.get("image_sizes", None)
for message in messages:
content = message["content"]
@@ -759,13 +919,15 @@ class PixtralPlugin(BasePlugin):
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
mm_inputs = self._get_mm_inputs(images, videos, processor)
self._validate_input(images, videos, audios)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
if mm_inputs.get("pixel_values"):
mm_inputs["pixel_values"] = mm_inputs["pixel_values"][0]
@@ -773,6 +935,58 @@ class PixtralPlugin(BasePlugin):
return mm_inputs
class Qwen2AudioPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos, audios)
bos_token: str = getattr(processor, "audio_bos_token")
eos_token: str = getattr(processor, "audio_eos_token")
mm_inputs = self._get_mm_inputs([], [], audios, processor)
if "feature_attention_mask" in mm_inputs:
audio_lengths = mm_inputs["feature_attention_mask"].sum(-1).tolist()
num_audio_tokens = 0
for message in messages:
content = message["content"]
while AUDIO_PLACEHOLDER in content:
audio_length = audio_lengths.pop(0)
input_length = (audio_length - 1) // 2 + 1
audio_seqlen = (input_length - 2) // 2 + 1 if self.expand_mm_tokens else 1
content = content.replace(
AUDIO_PLACEHOLDER, f"{bos_token}{self.audio_token * audio_seqlen}{eos_token}", 1
)
num_audio_tokens += 1
message["content"] = content
if len(audios) != num_audio_tokens:
raise ValueError(f"The number of audios does not match the number of {AUDIO_PLACEHOLDER} tokens.")
return messages
@override
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos, audios)
return self._get_mm_inputs(images, videos, audios, processor)
class Qwen2vlPlugin(BasePlugin):
@override
def _preprocess_image(self, image: "ImageObject", **kwargs) -> "ImageObject":
@@ -820,12 +1034,13 @@ class Qwen2vlPlugin(BasePlugin):
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
merge_length: int = getattr(image_processor, "merge_size") ** 2
mm_inputs = self._get_mm_inputs(images, videos, processor)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
image_grid_thw = mm_inputs.get("image_grid_thw", [])
video_grid_thw = mm_inputs.get("video_grid_thw", [])
@@ -868,13 +1083,15 @@ class Qwen2vlPlugin(BasePlugin):
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
mm_inputs = self._get_mm_inputs(images, videos, processor)
self._validate_input(images, videos, audios)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
if "second_per_grid_ts" in getattr(image_processor, "model_input_names", []) and "video_grid_thw" in mm_inputs:
video_fps = getattr(processor, "video_fps", 2.0)
@@ -892,12 +1109,13 @@ class VideoLlavaPlugin(BasePlugin):
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
self._validate_input(images, videos, audios)
num_image_tokens, num_video_tokens = 0, 0
messages = deepcopy(messages)
mm_inputs = self._get_mm_inputs(images, videos, processor)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
num_frames = 0
has_images = "pixel_values_images" in mm_inputs
has_videos = "pixel_values_videos" in mm_inputs
@@ -945,13 +1163,15 @@ class VideoLlavaPlugin(BasePlugin):
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
return self._get_mm_inputs(images, videos, processor)
self._validate_input(images, videos, audios)
return self._get_mm_inputs(images, videos, audios, processor)
PLUGINS = {
@@ -963,6 +1183,7 @@ PLUGINS = {
"mllama": MllamaPlugin,
"paligemma": PaliGemmaPlugin,
"pixtral": PixtralPlugin,
"qwen2_audio": Qwen2AudioPlugin,
"qwen2_vl": Qwen2vlPlugin,
"video_llava": VideoLlavaPlugin,
}
@@ -972,9 +1193,10 @@ def get_mm_plugin(
name: str,
image_token: Optional[str] = None,
video_token: Optional[str] = None,
audio_token: Optional[str] = None,
) -> "BasePlugin":
plugin_class = PLUGINS.get(name, None)
if plugin_class is None:
raise ValueError(f"Multimodal plugin `{name}` not found.")
return plugin_class(image_token, video_token)
return plugin_class(image_token, video_token, audio_token)