[model] support yarn (#6693)
Former-commit-id: 8c412abc44a4c61b683465e36c6288580d980250
This commit is contained in:
@@ -86,20 +86,7 @@ def load_tokenizer(model_args: "ModelArguments") -> "TokenizerModule":
|
||||
except Exception as e:
|
||||
raise OSError("Failed to load tokenizer.") from e
|
||||
|
||||
if model_args.model_max_length is not None and tokenizer.model_max_length != model_args.model_max_length:
|
||||
tokenizer.model_max_length = model_args.model_max_length
|
||||
|
||||
if model_args.new_special_tokens is not None:
|
||||
num_added_tokens = tokenizer.add_special_tokens(
|
||||
dict(additional_special_tokens=model_args.new_special_tokens),
|
||||
replace_additional_special_tokens=False,
|
||||
)
|
||||
logger.info_rank0("Add {} to special tokens.".format(",".join(model_args.new_special_tokens)))
|
||||
if num_added_tokens > 0 and not model_args.resize_vocab:
|
||||
model_args.resize_vocab = True
|
||||
logger.warning_rank0("New tokens have been added, changed `resize_vocab` to True.")
|
||||
|
||||
patch_tokenizer(tokenizer)
|
||||
patch_tokenizer(tokenizer, model_args)
|
||||
try:
|
||||
processor = AutoProcessor.from_pretrained(model_args.model_name_or_path, **init_kwargs)
|
||||
patch_processor(processor, config, tokenizer, model_args)
|
||||
|
||||
@@ -39,6 +39,7 @@ def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_
|
||||
logger.warning_rank0("Current model does not support RoPE scaling.")
|
||||
return
|
||||
|
||||
rope_kwargs = {}
|
||||
if model_args.model_max_length is not None:
|
||||
if is_trainable and model_args.rope_scaling == "dynamic":
|
||||
logger.warning_rank0(
|
||||
@@ -50,14 +51,21 @@ def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_
|
||||
if current_max_length and model_args.model_max_length > current_max_length:
|
||||
logger.info_rank0(f"Enlarge max model length from {current_max_length} to {model_args.model_max_length}.")
|
||||
setattr(config, "max_position_embeddings", model_args.model_max_length)
|
||||
scaling_factor = float(math.ceil(model_args.model_max_length / current_max_length))
|
||||
rope_kwargs["factor"] = float(math.ceil(model_args.model_max_length / current_max_length))
|
||||
else:
|
||||
logger.warning_rank0("Input length is smaller than max length. Consider increase input length.")
|
||||
scaling_factor = 1.0
|
||||
else:
|
||||
scaling_factor = 2.0
|
||||
rope_kwargs["factor"] = 1.0
|
||||
|
||||
setattr(config, "rope_scaling", {"type": model_args.rope_scaling, "factor": scaling_factor})
|
||||
if model_args.rope_scaling == "dynamic":
|
||||
rope_kwargs["original_max_position_embeddings"] = current_max_length
|
||||
elif model_args.rope_scaling == "llama3":
|
||||
rope_kwargs["original_max_position_embeddings"] = current_max_length
|
||||
rope_kwargs["low_freq_factor"] = 1.0
|
||||
rope_kwargs["high_freq_factor"] = 4.0
|
||||
else:
|
||||
rope_kwargs["factor"] = 2.0
|
||||
|
||||
setattr(config, "rope_scaling", {"rope_type": model_args.rope_scaling, **rope_kwargs})
|
||||
logger.info_rank0(
|
||||
f"Using {model_args.rope_scaling} scaling strategy and setting scaling factor to {scaling_factor}"
|
||||
f"Using {model_args.rope_scaling} scaling strategy and setting scaling factor to {rope_kwargs['factor']}."
|
||||
)
|
||||
|
||||
@@ -53,10 +53,23 @@ if TYPE_CHECKING:
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
def patch_tokenizer(tokenizer: "PreTrainedTokenizer") -> None:
|
||||
def patch_tokenizer(tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments") -> None:
|
||||
if "PreTrainedTokenizerBase" not in str(tokenizer._pad.__func__):
|
||||
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)
|
||||
|
||||
if model_args.model_max_length is not None and tokenizer.model_max_length != model_args.model_max_length:
|
||||
tokenizer.model_max_length = model_args.model_max_length
|
||||
|
||||
if model_args.new_special_tokens is not None:
|
||||
num_added_tokens = tokenizer.add_special_tokens(
|
||||
dict(additional_special_tokens=model_args.new_special_tokens),
|
||||
replace_additional_special_tokens=False,
|
||||
)
|
||||
logger.info_rank0("Add {} to special tokens.".format(",".join(model_args.new_special_tokens)))
|
||||
if num_added_tokens > 0 and not model_args.resize_vocab:
|
||||
model_args.resize_vocab = True
|
||||
logger.warning_rank0("New tokens have been added, changed `resize_vocab` to True.")
|
||||
|
||||
|
||||
def patch_processor(
|
||||
processor: "ProcessorMixin",
|
||||
|
||||
Reference in New Issue
Block a user