[model] support yarn (#6693)

Former-commit-id: 8c412abc44a4c61b683465e36c6288580d980250
This commit is contained in:
hoshi-hiyouga
2025-01-18 13:56:09 +08:00
committed by GitHub
parent e4046bdd1f
commit 87d685b59f
11 changed files with 84 additions and 64 deletions

View File

@@ -86,20 +86,7 @@ def load_tokenizer(model_args: "ModelArguments") -> "TokenizerModule":
except Exception as e:
raise OSError("Failed to load tokenizer.") from e
if model_args.model_max_length is not None and tokenizer.model_max_length != model_args.model_max_length:
tokenizer.model_max_length = model_args.model_max_length
if model_args.new_special_tokens is not None:
num_added_tokens = tokenizer.add_special_tokens(
dict(additional_special_tokens=model_args.new_special_tokens),
replace_additional_special_tokens=False,
)
logger.info_rank0("Add {} to special tokens.".format(",".join(model_args.new_special_tokens)))
if num_added_tokens > 0 and not model_args.resize_vocab:
model_args.resize_vocab = True
logger.warning_rank0("New tokens have been added, changed `resize_vocab` to True.")
patch_tokenizer(tokenizer)
patch_tokenizer(tokenizer, model_args)
try:
processor = AutoProcessor.from_pretrained(model_args.model_name_or_path, **init_kwargs)
patch_processor(processor, config, tokenizer, model_args)

View File

@@ -39,6 +39,7 @@ def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_
logger.warning_rank0("Current model does not support RoPE scaling.")
return
rope_kwargs = {}
if model_args.model_max_length is not None:
if is_trainable and model_args.rope_scaling == "dynamic":
logger.warning_rank0(
@@ -50,14 +51,21 @@ def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_
if current_max_length and model_args.model_max_length > current_max_length:
logger.info_rank0(f"Enlarge max model length from {current_max_length} to {model_args.model_max_length}.")
setattr(config, "max_position_embeddings", model_args.model_max_length)
scaling_factor = float(math.ceil(model_args.model_max_length / current_max_length))
rope_kwargs["factor"] = float(math.ceil(model_args.model_max_length / current_max_length))
else:
logger.warning_rank0("Input length is smaller than max length. Consider increase input length.")
scaling_factor = 1.0
else:
scaling_factor = 2.0
rope_kwargs["factor"] = 1.0
setattr(config, "rope_scaling", {"type": model_args.rope_scaling, "factor": scaling_factor})
if model_args.rope_scaling == "dynamic":
rope_kwargs["original_max_position_embeddings"] = current_max_length
elif model_args.rope_scaling == "llama3":
rope_kwargs["original_max_position_embeddings"] = current_max_length
rope_kwargs["low_freq_factor"] = 1.0
rope_kwargs["high_freq_factor"] = 4.0
else:
rope_kwargs["factor"] = 2.0
setattr(config, "rope_scaling", {"rope_type": model_args.rope_scaling, **rope_kwargs})
logger.info_rank0(
f"Using {model_args.rope_scaling} scaling strategy and setting scaling factor to {scaling_factor}"
f"Using {model_args.rope_scaling} scaling strategy and setting scaling factor to {rope_kwargs['factor']}."
)

View File

@@ -53,10 +53,23 @@ if TYPE_CHECKING:
logger = logging.get_logger(__name__)
def patch_tokenizer(tokenizer: "PreTrainedTokenizer") -> None:
def patch_tokenizer(tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments") -> None:
if "PreTrainedTokenizerBase" not in str(tokenizer._pad.__func__):
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)
if model_args.model_max_length is not None and tokenizer.model_max_length != model_args.model_max_length:
tokenizer.model_max_length = model_args.model_max_length
if model_args.new_special_tokens is not None:
num_added_tokens = tokenizer.add_special_tokens(
dict(additional_special_tokens=model_args.new_special_tokens),
replace_additional_special_tokens=False,
)
logger.info_rank0("Add {} to special tokens.".format(",".join(model_args.new_special_tokens)))
if num_added_tokens > 0 and not model_args.resize_vocab:
model_args.resize_vocab = True
logger.warning_rank0("New tokens have been added, changed `resize_vocab` to True.")
def patch_processor(
processor: "ProcessorMixin",