support longlora for main branch

Former-commit-id: f869501ad4c368df26534c41f62c6d63c6be17dd
This commit is contained in:
hiyouga
2024-01-20 19:25:22 +08:00
parent 8efc055511
commit 80637fc06d
7 changed files with 168 additions and 204 deletions

View File

@@ -15,6 +15,7 @@ from ..extras.constants import FILEEXT2TYPE, LAYERNORM_NAMES
from ..extras.logging import get_logger
from ..extras.misc import get_current_device, infer_optim_dtype
from ..extras.packages import is_flash_attn2_available
from ..extras.patches.llama_patch import apply_llama_patch
if TYPE_CHECKING:
from transformers import PretrainedConfig, PreTrainedTokenizer
@@ -23,7 +24,7 @@ if TYPE_CHECKING:
logger = get_logger(__name__)
SUPPORTED_CLASS_FOR_S2ATTN = [] # TODO: add llama
SUPPORTED_CLASS_FOR_S2ATTN = ["llama"]
def _noisy_mean_initialization(embed_weight: torch.Tensor, num_new_tokens: int):
@@ -39,26 +40,25 @@ def _resize_embedding_layer(model: "PreTrainedModel", tokenizer: "PreTrainedToke
Resize token embeddings.
"""
if is_deepspeed_zero3_enabled():
import deepspeed
with deepspeed.zero.GatheredParameters(model.get_input_embeddings().weight, modifier_rank=None):
current_embedding_size = model.get_input_embeddings().weight.size(0)
import deepspeed # type: ignore
params = [model.get_input_embeddings().weight]
if model.get_output_embeddings() is not None and not model.config.tie_word_embeddings:
params.append(model.get_output_embeddings().weight)
context_maybe_zero3 = deepspeed.zero.GatheredParameters(params, modifier_rank=0)
else:
context_maybe_zero3 = nullcontext()
with context_maybe_zero3:
current_embedding_size = model.get_input_embeddings().weight.size(0)
if len(tokenizer) > current_embedding_size:
if not isinstance(model.get_output_embeddings(), torch.nn.Linear):
logger.warning("Current model does not support resizing token embeddings.")
return
model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=64)
if is_deepspeed_zero3_enabled():
import deepspeed
params = [model.get_input_embeddings().weight]
if model.get_output_embeddings() is not None and not model.config.tie_word_embeddings:
params.append(model.get_output_embeddings().weight)
context = deepspeed.zero.GatheredParameters(params, modifier_rank=0)
else:
context = nullcontext()
with context:
with context_maybe_zero3:
new_embedding_size = model.get_input_embeddings().weight.size(0)
num_new_tokens = new_embedding_size - current_embedding_size
_noisy_mean_initialization(model.get_input_embeddings().weight.data, num_new_tokens)
@@ -136,6 +136,7 @@ def _configure_flashattn(config_kwargs: Dict[str, Any]) -> None:
def _configure_longlora(config: "PretrainedConfig") -> None:
if getattr(config, "model_type", None) in SUPPORTED_CLASS_FOR_S2ATTN:
setattr(config, "group_size_ratio", 0.25)
apply_llama_patch()
logger.info("Using shift short attention with group_size_ratio=1/4.")
else:
logger.warning("Current model does not support shift short attention.")