add tests
Former-commit-id: 484634ee9c982e82e919ff67d507e0210345182d
This commit is contained in:
@@ -13,16 +13,21 @@
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
from typing import Dict
|
||||
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
from llamafactory.extras.misc import get_current_device
|
||||
from llamafactory.hparams import get_infer_args
|
||||
from llamafactory.model import load_model, load_tokenizer
|
||||
|
||||
|
||||
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
|
||||
|
||||
TINY_LLAMA_VALUEHEAD = os.environ.get("TINY_LLAMA_VALUEHEAD", "llamafactory/tiny-random-Llama-3-valuehead")
|
||||
|
||||
INFER_ARGS = {
|
||||
"model_name_or_path": TINY_LLAMA,
|
||||
"template": "llama3",
|
||||
@@ -38,9 +43,32 @@ def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module"):
|
||||
assert torch.allclose(state_dict_a[name], state_dict_b[name]) is True
|
||||
|
||||
|
||||
def post_init(self: "AutoModelForCausalLMWithValueHead", state_dict: Dict[str, "torch.Tensor"]):
|
||||
state_dict = {k[7:]: state_dict[k] for k in state_dict.keys() if k.startswith("v_head.")}
|
||||
self.v_head.load_state_dict(state_dict, strict=False)
|
||||
del state_dict
|
||||
|
||||
|
||||
def test_base():
|
||||
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False)
|
||||
ref_model = AutoModelForCausalLM.from_pretrained(TINY_LLAMA, torch_dtype=model.dtype, device_map=model.device)
|
||||
|
||||
ref_model = AutoModelForCausalLM.from_pretrained(
|
||||
TINY_LLAMA, torch_dtype=torch.float16, device_map=get_current_device()
|
||||
)
|
||||
compare_model(model, ref_model)
|
||||
|
||||
|
||||
def test_valuehead():
|
||||
AutoModelForCausalLMWithValueHead.post_init = post_init # patch for CPU test
|
||||
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(
|
||||
tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False, add_valuehead=True
|
||||
)
|
||||
|
||||
ref_model = AutoModelForCausalLMWithValueHead.from_pretrained(
|
||||
TINY_LLAMA_VALUEHEAD, torch_dtype=torch.float16, device_map=get_current_device()
|
||||
)
|
||||
compare_model(model, ref_model)
|
||||
|
||||
Reference in New Issue
Block a user