add docstrings, refactor logger
Former-commit-id: c34e489d71f8f539028543ccf8ee92cecedd6276
This commit is contained in:
@@ -23,6 +23,7 @@ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import Seq2SeqTrainer
|
||||
from typing_extensions import override
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.logging import get_logger
|
||||
@@ -64,17 +65,20 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
|
||||
self.add_callback(BAdamCallback)
|
||||
|
||||
@override
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args)
|
||||
return super().create_optimizer()
|
||||
|
||||
@override
|
||||
def create_scheduler(
|
||||
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
||||
) -> "torch.optim.lr_scheduler.LRScheduler":
|
||||
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
||||
return super().create_scheduler(num_training_steps, optimizer)
|
||||
|
||||
@override
|
||||
def prediction_step(
|
||||
self,
|
||||
model: "torch.nn.Module",
|
||||
|
||||
Reference in New Issue
Block a user