add docstrings, refactor logger
Former-commit-id: c34e489d71f8f539028543ccf8ee92cecedd6276
This commit is contained in:
@@ -22,6 +22,7 @@ from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from transformers import Trainer
|
||||
from typing_extensions import override
|
||||
|
||||
from ...extras.logging import get_logger
|
||||
from ..callbacks import FixValueHeadModelCallback, PissaConvertCallback, SaveProcessorCallback
|
||||
@@ -63,17 +64,20 @@ class PairwiseTrainer(Trainer):
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
|
||||
self.add_callback(BAdamCallback)
|
||||
|
||||
@override
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args)
|
||||
return super().create_optimizer()
|
||||
|
||||
@override
|
||||
def create_scheduler(
|
||||
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
||||
) -> "torch.optim.lr_scheduler.LRScheduler":
|
||||
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
||||
return super().create_scheduler(num_training_steps, optimizer)
|
||||
|
||||
@override
|
||||
def compute_loss(
|
||||
self, model: "PreTrainedModel", inputs: Dict[str, "torch.Tensor"], return_outputs: bool = False
|
||||
) -> Union["torch.Tensor", Tuple["torch.Tensor", List["torch.Tensor"]]]:
|
||||
|
||||
Reference in New Issue
Block a user