add docstrings, refactor logger

Former-commit-id: c34e489d71f8f539028543ccf8ee92cecedd6276
This commit is contained in:
hiyouga
2024-09-08 00:56:56 +08:00
parent 93d4570a59
commit 7f71276ad8
30 changed files with 334 additions and 57 deletions

View File

@@ -25,6 +25,7 @@ import torch
from transformers import Trainer
from trl import KTOTrainer
from trl.trainer import disable_dropout_in_model
from typing_extensions import override
from ...extras.constants import IGNORE_INDEX
from ..callbacks import SaveProcessorCallback
@@ -99,23 +100,27 @@ class CustomKTOTrainer(KTOTrainer):
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
self.add_callback(BAdamCallback)
@override
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:
self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args)
return super().create_optimizer()
@override
def create_scheduler(
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
) -> "torch.optim.lr_scheduler.LRScheduler":
create_custom_scheduler(self.args, num_training_steps, optimizer)
return super().create_scheduler(num_training_steps, optimizer)
@override
def _get_train_sampler(self) -> Optional["torch.utils.data.Sampler"]:
r"""
Replaces the sequential sampler of KTO Trainer created by trl with the random sampler.
"""
return Trainer._get_train_sampler(self)
@override
def forward(
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"], prefix: Literal["", "kl_"] = ""
) -> Tuple["torch.Tensor", "torch.Tensor"]:
@@ -140,6 +145,7 @@ class CustomKTOTrainer(KTOTrainer):
logps, valid_length = get_batch_logps(logits=logits, labels=batch["{}labels".format(prefix)])
return logps, logps / valid_length
@override
def concatenated_forward(
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
@@ -155,6 +161,7 @@ class CustomKTOTrainer(KTOTrainer):
chosen_logps_avg = target_logps_avg[batch["kto_tags"]]
return chosen_logps, rejected_logps, kl_logps, chosen_logps_avg
@override
def compute_reference_log_probs(
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]:
@@ -175,6 +182,7 @@ class CustomKTOTrainer(KTOTrainer):
return reference_chosen_logps, reference_rejected_logps, reference_kl_logps
@override
def get_batch_loss_metrics(
self,
model: "PreTrainedModel",