[model] add Qwen2.5-Omni model (#7537)
* preserve image_sizes * preserve image_sizes * init plugin * support audio-text2text lora * nit * support image/video-text2text, audio-text2text * remove args * remove lines * add docs && nit * remove some comments * fix && add merge part script * add license
This commit is contained in:
90
scripts/lora_part_merge.py
Normal file
90
scripts/lora_part_merge.py
Normal file
@@ -0,0 +1,90 @@
|
||||
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
|
||||
#
|
||||
# This code is based on the HuggingFace's PEFT library.
|
||||
# https://github.com/huggingface/peft/blob/v0.10.0/examples/loftq_finetuning/quantize_save_load.py
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
import shutil
|
||||
|
||||
import fire
|
||||
from peft import PeftModel
|
||||
from transformers import AutoModel, AutoProcessor, AutoTokenizer
|
||||
|
||||
|
||||
def merge_lora(
|
||||
base_model_path: str,
|
||||
lora_checkpoint_path: str,
|
||||
extra_file: str = "spk_dict.pt",
|
||||
submodule_name: str = "thinker",
|
||||
save_path: str = "./merged_model_checkpoint",
|
||||
):
|
||||
"""Load the original model, tokenizer, and processor configuration, merge the LoRA weights.
|
||||
|
||||
for a specified submodule, and save the final merged model along with its configurations.
|
||||
|
||||
Args:
|
||||
base_model_path (str): Path to the original model directory.
|
||||
lora_checkpoint_path (str): Path to the directory containing LoRA weights.
|
||||
extra_file (str): Name of the extra file to be copied (default: "spk_dict.pt").
|
||||
submodule_name (str): Name of the submodule to merge (default: "thinker").
|
||||
save_path (str): Directory where the merged model and configurations will be saved.
|
||||
"""
|
||||
# 1. Load the original model, tokenizer, and processor
|
||||
model = AutoModel.from_pretrained(base_model_path)
|
||||
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
||||
|
||||
try:
|
||||
processor = AutoProcessor.from_pretrained(base_model_path)
|
||||
except Exception:
|
||||
print("Processor configuration not found, skipping processor load.")
|
||||
processor = None
|
||||
|
||||
print("Successfully loaded the original model, tokenizer, and processor (if available).")
|
||||
|
||||
# 2. Extract the submodule to be merged (e.g., model.thinker)
|
||||
if not hasattr(model, submodule_name):
|
||||
raise AttributeError(f"The model does not have a submodule named '{submodule_name}'.")
|
||||
base_submodule = getattr(model, submodule_name)
|
||||
print(f"Successfully extracted submodule: {submodule_name}.")
|
||||
|
||||
# 3. Load the LoRA weights onto the extracted submodule
|
||||
lora_model = PeftModel.from_pretrained(base_submodule, lora_checkpoint_path)
|
||||
print("LoRA weights loaded successfully.")
|
||||
|
||||
# 4. Merge the LoRA weights into the submodule and unload the LoRA modules
|
||||
merged_submodule = lora_model.merge_and_unload()
|
||||
print("LoRA weights merged successfully.")
|
||||
|
||||
# 5. Replace the original submodule with the merged submodule in the model
|
||||
setattr(model, submodule_name, merged_submodule)
|
||||
|
||||
# 6. Save the final merged model along with the tokenizer and processor configuration
|
||||
model.save_pretrained(save_path)
|
||||
tokenizer.save_pretrained(save_path)
|
||||
if processor is not None:
|
||||
processor.save_pretrained(save_path)
|
||||
|
||||
print(f"Merged model and configuration saved to {save_path}.")
|
||||
|
||||
source_file = os.path.join(base_model_path, extra_file)
|
||||
target_file = os.path.join(save_path, extra_file)
|
||||
if os.path.exists(source_file):
|
||||
shutil.copy(source_file, target_file)
|
||||
print(f"File '{extra_file}' copied from {base_model_path} to {save_path}.")
|
||||
else:
|
||||
print(f"File '{extra_file}' not found in {base_model_path}, skipping copy.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(merge_lora)
|
||||
Reference in New Issue
Block a user