fix mixed mm inputs and rlhf-v
Former-commit-id: 7c248fac20bf85d57a91132ce7a793c7f84e9218
This commit is contained in:
@@ -21,6 +21,7 @@ from .processor_utils import infer_seqlen
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from PIL.Image import Image
|
||||
from transformers import PreTrainedTokenizer, ProcessorMixin
|
||||
|
||||
from ...hparams import DataArguments
|
||||
@@ -36,11 +37,12 @@ def _encode_feedback_example(
|
||||
kl_response: Sequence[Dict[str, str]],
|
||||
system: Optional[str],
|
||||
tools: Optional[str],
|
||||
images: Sequence["Image"],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
cutoff_len: int,
|
||||
) -> Tuple[List[int], List[int], List[int], List[int], bool]:
|
||||
) -> Tuple[List[int], List[int], List[int], List[int], bool, Dict[str, Any]]:
|
||||
if response[0]["content"]: # desired example
|
||||
kto_tag = True
|
||||
messages = prompt + [response[0]]
|
||||
@@ -53,6 +55,8 @@ def _encode_feedback_example(
|
||||
else:
|
||||
kl_messages = prompt + [kl_response[1]]
|
||||
|
||||
messages = template.mm_plugin.process_messages(messages, images, processor)
|
||||
kl_messages = template.mm_plugin.process_messages(kl_messages, images, processor)
|
||||
prompt_ids, response_ids = template.encode_oneturn(tokenizer, messages, system, tools)
|
||||
kl_prompt_ids, kl_response_ids = template.encode_oneturn(tokenizer, kl_messages, system, tools)
|
||||
|
||||
@@ -60,8 +64,8 @@ def _encode_feedback_example(
|
||||
response_ids += [tokenizer.eos_token_id]
|
||||
kl_response_ids += [tokenizer.eos_token_id]
|
||||
|
||||
prompt_ids, _ = template.mm_plugin.process_token_ids(prompt_ids, None, tokenizer, processor)
|
||||
kl_prompt_ids, _ = template.mm_plugin.process_token_ids(kl_prompt_ids, None, tokenizer, processor)
|
||||
prompt_ids, _ = template.mm_plugin.process_token_ids(prompt_ids, None, images, tokenizer, processor)
|
||||
kl_prompt_ids, _ = template.mm_plugin.process_token_ids(kl_prompt_ids, None, images, tokenizer, processor)
|
||||
|
||||
source_len, target_len = infer_seqlen(len(prompt_ids), len(response_ids), cutoff_len)
|
||||
prompt_ids = prompt_ids[:source_len]
|
||||
@@ -74,8 +78,15 @@ def _encode_feedback_example(
|
||||
labels = [IGNORE_INDEX] * source_len + response_ids
|
||||
kl_input_ids = kl_prompt_ids + kl_response_ids
|
||||
kl_labels = [IGNORE_INDEX] * kl_source_len + kl_response_ids
|
||||
|
||||
return input_ids, labels, kl_input_ids, kl_labels, kto_tag
|
||||
extra_inputs = template.mm_plugin.get_mm_inputs(
|
||||
images=images,
|
||||
feature_seqlens={
|
||||
"token_type_ids": len(input_ids),
|
||||
"kl_token_type_ids": len(kl_input_ids),
|
||||
},
|
||||
processor=processor,
|
||||
)
|
||||
return input_ids, labels, kl_input_ids, kl_labels, kto_tag, extra_inputs
|
||||
|
||||
|
||||
def preprocess_feedback_dataset(
|
||||
@@ -93,13 +104,13 @@ def preprocess_feedback_dataset(
|
||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
continue
|
||||
|
||||
prompt = template.mm_plugin.process_messages(examples["prompt"][i], examples["images"][i], processor)
|
||||
input_ids, labels, kl_input_ids, kl_labels, kto_tag = _encode_feedback_example(
|
||||
prompt=prompt,
|
||||
input_ids, labels, kl_input_ids, kl_labels, kto_tag, extra_inputs = _encode_feedback_example(
|
||||
prompt=examples["prompt"][i],
|
||||
response=examples["response"][i],
|
||||
kl_response=kl_response[i],
|
||||
system=examples["system"][i],
|
||||
tools=examples["tools"][i],
|
||||
images=examples["images"][i],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
@@ -112,15 +123,8 @@ def preprocess_feedback_dataset(
|
||||
model_inputs["kl_attention_mask"].append([1] * len(kl_input_ids))
|
||||
model_inputs["kl_labels"].append(kl_labels)
|
||||
model_inputs["kto_tags"].append(kto_tag)
|
||||
template.mm_plugin.process_model_inputs(
|
||||
model_inputs=model_inputs,
|
||||
images=examples["images"][i],
|
||||
feature_seqlens={
|
||||
"token_type_ids": len(input_ids),
|
||||
"kl_token_type_ids": len(kl_input_ids),
|
||||
},
|
||||
processor=processor,
|
||||
)
|
||||
for key, value in extra_inputs.items():
|
||||
model_inputs[key].append(value)
|
||||
|
||||
desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag])
|
||||
undesirable_num = len(model_inputs["kto_tags"]) - desirable_num
|
||||
|
||||
@@ -21,6 +21,7 @@ from .processor_utils import infer_seqlen
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from PIL.Image import Image
|
||||
from transformers import PreTrainedTokenizer, ProcessorMixin
|
||||
|
||||
from ...hparams import DataArguments
|
||||
@@ -35,13 +36,14 @@ def _encode_pairwise_example(
|
||||
response: Sequence[Dict[str, str]],
|
||||
system: Optional[str],
|
||||
tools: Optional[str],
|
||||
images: Sequence["Image"],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
cutoff_len: int,
|
||||
) -> Tuple[List[int], List[int], List[int], List[int]]:
|
||||
chosen_messages = prompt + [response[0]]
|
||||
rejected_messages = prompt + [response[1]]
|
||||
) -> Tuple[List[int], List[int], List[int], List[int], Dict[str, Any]]:
|
||||
chosen_messages = template.mm_plugin.process_messages(prompt + [response[0]], images, processor)
|
||||
rejected_messages = template.mm_plugin.process_messages(prompt + [response[1]], images, processor)
|
||||
prompt_ids, chosen_ids = template.encode_oneturn(tokenizer, chosen_messages, system, tools)
|
||||
_, rejected_ids = template.encode_oneturn(tokenizer, rejected_messages, system, tools)
|
||||
|
||||
@@ -49,7 +51,7 @@ def _encode_pairwise_example(
|
||||
chosen_ids += [tokenizer.eos_token_id]
|
||||
rejected_ids += [tokenizer.eos_token_id]
|
||||
|
||||
prompt_ids, _ = template.mm_plugin.process_token_ids(prompt_ids, None, tokenizer, processor)
|
||||
prompt_ids, _ = template.mm_plugin.process_token_ids(prompt_ids, None, images, tokenizer, processor)
|
||||
# consider the response is more important
|
||||
source_len, target_len = infer_seqlen(len(prompt_ids), max(len(chosen_ids), len(rejected_ids)), cutoff_len)
|
||||
prompt_ids = prompt_ids[:source_len]
|
||||
@@ -60,8 +62,15 @@ def _encode_pairwise_example(
|
||||
chosen_labels = [IGNORE_INDEX] * source_len + chosen_ids
|
||||
rejected_input_ids = prompt_ids + rejected_ids
|
||||
rejected_labels = [IGNORE_INDEX] * source_len + rejected_ids
|
||||
|
||||
return chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels
|
||||
extra_inputs = template.mm_plugin.get_mm_inputs(
|
||||
images=images,
|
||||
feature_seqlens={
|
||||
"chosen_token_type_ids": len(chosen_input_ids),
|
||||
"rejected_token_type_ids": len(rejected_input_ids),
|
||||
},
|
||||
processor=processor,
|
||||
)
|
||||
return chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels, extra_inputs
|
||||
|
||||
|
||||
def preprocess_pairwise_dataset(
|
||||
@@ -78,12 +87,12 @@ def preprocess_pairwise_dataset(
|
||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
continue
|
||||
|
||||
prompt = template.mm_plugin.process_messages(examples["prompt"][i], examples["images"][i], processor)
|
||||
chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels = _encode_pairwise_example(
|
||||
prompt=prompt,
|
||||
chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels, extra_inputs = _encode_pairwise_example(
|
||||
prompt=examples["prompt"][i],
|
||||
response=examples["response"][i],
|
||||
system=examples["system"][i],
|
||||
tools=examples["tools"][i],
|
||||
images=examples["images"][i],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
@@ -95,15 +104,8 @@ def preprocess_pairwise_dataset(
|
||||
model_inputs["rejected_input_ids"].append(rejected_input_ids)
|
||||
model_inputs["rejected_attention_mask"].append([1] * len(rejected_input_ids))
|
||||
model_inputs["rejected_labels"].append(rejected_labels)
|
||||
template.mm_plugin.process_model_inputs(
|
||||
model_inputs=model_inputs,
|
||||
images=examples["images"][i],
|
||||
feature_seqlens={
|
||||
"chosen_token_type_ids": len(chosen_input_ids),
|
||||
"rejected_token_type_ids": len(rejected_input_ids),
|
||||
},
|
||||
processor=processor,
|
||||
)
|
||||
for key, value in extra_inputs.items():
|
||||
model_inputs[key].append(value)
|
||||
|
||||
return model_inputs
|
||||
|
||||
|
||||
@@ -21,6 +21,7 @@ from .processor_utils import greedy_knapsack, infer_seqlen
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from PIL.Image import Image
|
||||
from transformers import PreTrainedTokenizer, ProcessorMixin
|
||||
|
||||
from ...hparams import DataArguments
|
||||
@@ -35,19 +36,18 @@ def _encode_supervised_example(
|
||||
response: Sequence[Dict[str, str]],
|
||||
system: Optional[str],
|
||||
tools: Optional[str],
|
||||
images: Sequence["Image"],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
cutoff_len: int,
|
||||
train_on_prompt: bool,
|
||||
mask_history: bool,
|
||||
) -> Tuple[List[int], List[int]]:
|
||||
messages = prompt + response
|
||||
input_ids, labels = [], []
|
||||
input_ids, labels = template.mm_plugin.process_token_ids(input_ids, labels, tokenizer, processor)
|
||||
|
||||
) -> Tuple[List[int], List[int], Dict[str, Any]]:
|
||||
messages = template.mm_plugin.process_messages(prompt + response, images, processor)
|
||||
input_ids, labels = template.mm_plugin.process_token_ids([], [], images, tokenizer, processor)
|
||||
encoded_pairs = template.encode_multiturn(tokenizer, messages, system, tools)
|
||||
total_length = 1 if template.efficient_eos else 0
|
||||
total_length = len(input_ids) + (1 if template.efficient_eos else 0)
|
||||
if mask_history:
|
||||
encoded_pairs = encoded_pairs[::-1] # high priority for last turns
|
||||
|
||||
@@ -83,7 +83,10 @@ def _encode_supervised_example(
|
||||
input_ids += [tokenizer.eos_token_id]
|
||||
labels += [tokenizer.eos_token_id]
|
||||
|
||||
return input_ids, labels
|
||||
extra_inputs = template.mm_plugin.get_mm_inputs(
|
||||
images=images, feature_seqlens={"token_type_ids": len(input_ids)}, processor=processor
|
||||
)
|
||||
return input_ids, labels, extra_inputs
|
||||
|
||||
|
||||
def preprocess_supervised_dataset(
|
||||
@@ -101,12 +104,12 @@ def preprocess_supervised_dataset(
|
||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
continue
|
||||
|
||||
prompt = template.mm_plugin.process_messages(examples["prompt"][i], examples["images"][i], processor)
|
||||
input_ids, labels = _encode_supervised_example(
|
||||
prompt=prompt,
|
||||
input_ids, labels, extra_inputs = _encode_supervised_example(
|
||||
prompt=examples["prompt"][i],
|
||||
response=examples["response"][i],
|
||||
system=examples["system"][i],
|
||||
tools=examples["tools"][i],
|
||||
images=examples["images"][i],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
@@ -117,12 +120,8 @@ def preprocess_supervised_dataset(
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
model_inputs["labels"].append(labels)
|
||||
template.mm_plugin.process_model_inputs(
|
||||
model_inputs=model_inputs,
|
||||
images=examples["images"][i],
|
||||
feature_seqlens={"token_type_ids": len(input_ids)},
|
||||
processor=processor,
|
||||
)
|
||||
for key, value in extra_inputs.items():
|
||||
model_inputs[key].append(value)
|
||||
|
||||
return model_inputs
|
||||
|
||||
@@ -131,10 +130,15 @@ def preprocess_packed_supervised_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, List[Any]]:
|
||||
# TODO: use `position_ids` to achieve packing
|
||||
# build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
|
||||
# and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>`
|
||||
if processor is not None:
|
||||
raise NotImplementedError("`packing` have not been implemented for multimodal datasets.")
|
||||
|
||||
valid_num = 0
|
||||
batch_input_ids, batch_labels = [], []
|
||||
lengths = []
|
||||
@@ -149,6 +153,7 @@ def preprocess_packed_supervised_dataset(
|
||||
response=examples["response"][i],
|
||||
system=examples["system"][i],
|
||||
tools=examples["tools"][i],
|
||||
images=examples["images"][i],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=None,
|
||||
|
||||
@@ -21,6 +21,7 @@ from .processor_utils import infer_seqlen
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from PIL.Image import Image
|
||||
from transformers import PreTrainedTokenizer, ProcessorMixin
|
||||
|
||||
from ...hparams import DataArguments
|
||||
@@ -35,25 +36,30 @@ def _encode_unsupervised_example(
|
||||
response: Sequence[Dict[str, str]],
|
||||
system: Optional[str],
|
||||
tools: Optional[str],
|
||||
images: Sequence["Image"],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
cutoff_len: int,
|
||||
) -> Tuple[List[int], List[int]]:
|
||||
) -> Tuple[List[int], List[int], Dict[str, Any]]:
|
||||
if len(response) == 1:
|
||||
messages = prompt + response
|
||||
else:
|
||||
messages = prompt + [{"role": Role.ASSISTANT.value, "content": ""}]
|
||||
|
||||
messages = template.mm_plugin.process_messages(messages, images, processor)
|
||||
input_ids, labels = template.encode_oneturn(tokenizer, messages, system, tools)
|
||||
if template.efficient_eos:
|
||||
labels += [tokenizer.eos_token_id]
|
||||
|
||||
input_ids, _ = template.mm_plugin.process_token_ids(input_ids, None, tokenizer, processor)
|
||||
input_ids, _ = template.mm_plugin.process_token_ids(input_ids, None, images, tokenizer, processor)
|
||||
source_len, target_len = infer_seqlen(len(input_ids), len(labels), cutoff_len)
|
||||
input_ids = input_ids[:source_len]
|
||||
labels = labels[:target_len]
|
||||
return input_ids, labels
|
||||
extra_inputs = template.mm_plugin.get_mm_inputs(
|
||||
images=images, feature_seqlens={"token_type_ids": len(input_ids)}, processor=processor
|
||||
)
|
||||
return input_ids, labels, extra_inputs
|
||||
|
||||
|
||||
def preprocess_unsupervised_dataset(
|
||||
@@ -70,12 +76,12 @@ def preprocess_unsupervised_dataset(
|
||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
continue
|
||||
|
||||
prompt = template.mm_plugin.process_messages(examples["prompt"][i], examples["images"][i], processor)
|
||||
input_ids, labels = _encode_unsupervised_example(
|
||||
prompt=prompt,
|
||||
input_ids, labels, extra_inputs = _encode_unsupervised_example(
|
||||
prompt=examples["prompt"][i],
|
||||
response=examples["response"][i],
|
||||
system=examples["system"][i],
|
||||
tools=examples["tools"][i],
|
||||
images=examples["images"][i],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
@@ -84,12 +90,8 @@ def preprocess_unsupervised_dataset(
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
model_inputs["labels"].append(labels)
|
||||
template.mm_plugin.process_model_inputs(
|
||||
model_inputs=model_inputs,
|
||||
images=examples["images"][i],
|
||||
feature_seqlens={"token_type_ids": len(input_ids)},
|
||||
processor=processor,
|
||||
)
|
||||
for key, value in extra_inputs.items():
|
||||
model_inputs[key].append(value)
|
||||
|
||||
return model_inputs
|
||||
|
||||
|
||||
Reference in New Issue
Block a user