@@ -1,4 +1,5 @@
|
||||
import os
|
||||
import random
|
||||
|
||||
import pytest
|
||||
from datasets import load_dataset
|
||||
@@ -8,17 +9,17 @@ from llamafactory.hparams import get_train_args
|
||||
from llamafactory.model import load_tokenizer
|
||||
|
||||
|
||||
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-LlamaForCausalLM")
|
||||
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
|
||||
|
||||
TRAINING_ARGS = {
|
||||
TRAIN_ARGS = {
|
||||
"model_name_or_path": TINY_LLAMA,
|
||||
"stage": "sft",
|
||||
"do_train": True,
|
||||
"finetuning_type": "full",
|
||||
"dataset": "llamafactory/tiny_dataset",
|
||||
"dataset": "llamafactory/tiny-supervised-dataset",
|
||||
"dataset_dir": "ONLINE",
|
||||
"template": "llama3",
|
||||
"cutoff_len": 1024,
|
||||
"cutoff_len": 8192,
|
||||
"overwrite_cache": True,
|
||||
"output_dir": "dummy_dir",
|
||||
"overwrite_output_dir": True,
|
||||
@@ -26,19 +27,24 @@ TRAINING_ARGS = {
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.parametrize("test_num", [5])
|
||||
def test_supervised(test_num: int):
|
||||
model_args, data_args, training_args, _, _ = get_train_args(TRAINING_ARGS)
|
||||
@pytest.mark.parametrize("num_samples", [10])
|
||||
def test_supervised(num_samples: int):
|
||||
model_args, data_args, training_args, _, _ = get_train_args(TRAIN_ARGS)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
tokenized_data = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
|
||||
|
||||
original_data = load_dataset(TRAINING_ARGS["dataset"], split="train")
|
||||
for test_idx in range(test_num):
|
||||
decode_result = tokenizer.decode(tokenized_data["input_ids"][test_idx])
|
||||
original_data = load_dataset(TRAIN_ARGS["dataset"], split="train")
|
||||
indexes = random.choices(range(len(original_data)), k=num_samples)
|
||||
for index in indexes:
|
||||
decoded_result = tokenizer.decode(tokenized_data["input_ids"][index])
|
||||
prompt = original_data[index]["instruction"]
|
||||
if original_data[index]["input"]:
|
||||
prompt += "\n" + original_data[index]["input"]
|
||||
|
||||
messages = [
|
||||
{"role": "user", "content": original_data[test_idx]["instruction"]},
|
||||
{"role": "assistant", "content": original_data[test_idx]["output"]},
|
||||
{"role": "user", "content": prompt},
|
||||
{"role": "assistant", "content": original_data[index]["output"]},
|
||||
]
|
||||
templated_result = tokenizer.apply_chat_template(messages, tokenize=False)
|
||||
assert decode_result == templated_result
|
||||
assert decoded_result == templated_result
|
||||
|
||||
Reference in New Issue
Block a user