Former-commit-id: 9acd5a2b678cd07f8e3b48eca76c4cbacb559e37
This commit is contained in:
hiyouga
2024-01-11 17:04:13 +08:00
parent 64246d42d2
commit 73cab9d9d4
4 changed files with 75 additions and 71 deletions

View File

@@ -1,78 +1,23 @@
import os
import json
import time
import torch
from typing import TYPE_CHECKING, Dict
from typing import TYPE_CHECKING
from datetime import timedelta
from transformers import PreTrainedModel, TrainerCallback
from transformers.utils import WEIGHTS_NAME, SAFE_WEIGHTS_NAME
from transformers import TrainerCallback
from transformers.trainer_utils import has_length, PREFIX_CHECKPOINT_DIR
from peft import PeftModel
from llmtuner.extras.constants import LOG_FILE_NAME, V_HEAD_WEIGHTS_NAME, V_HEAD_SAFE_WEIGHTS_NAME
from llmtuner.extras.constants import LOG_FILE_NAME
from llmtuner.extras.logging import get_logger
from llmtuner.extras.misc import fix_valuehead_checkpoint
if TYPE_CHECKING:
from transformers import TrainingArguments, TrainerState, TrainerControl
from trl import AutoModelForCausalLMWithValueHead
logger = get_logger(__name__)
def _fix_valuehead_checkpoint(
model: "AutoModelForCausalLMWithValueHead",
output_dir: str,
safe_serialization: bool
) -> None:
r"""
The model is already unwrapped.
There are three cases:
1. full tuning without ds_zero3: state_dict = {"model.layers.*": ..., "v_head.summary.*": ...}
2. lora tuning without ds_zero3: state_dict = {"v_head.summary.*": ...}
3. under deepspeed zero3: state_dict = {"pretrained_model.model.layers.*": ..., "v_head.summary.*": ...}
We assume `stage3_gather_16bit_weights_on_model_save=true`.
"""
if not isinstance(model.pretrained_model, (PreTrainedModel, PeftModel)):
return
if safe_serialization:
from safetensors import safe_open
from safetensors.torch import save_file
path_to_checkpoint = os.path.join(output_dir, SAFE_WEIGHTS_NAME)
with safe_open(path_to_checkpoint, framework="pt", device="cpu") as f:
state_dict: Dict[str, torch.Tensor] = {key: f.get_tensor(key) for key in f.keys()}
else:
path_to_checkpoint = os.path.join(output_dir, WEIGHTS_NAME)
state_dict: Dict[str, torch.Tensor] = torch.load(path_to_checkpoint, map_location="cpu")
decoder_state_dict = {}
v_head_state_dict = {}
for name, param in state_dict.items():
if name.startswith("v_head."):
v_head_state_dict[name] = param
else:
decoder_state_dict[name.replace("pretrained_model.", "")] = param
os.remove(path_to_checkpoint)
model.pretrained_model.save_pretrained(
output_dir,
state_dict=decoder_state_dict or None,
safe_serialization=safe_serialization
)
if safe_serialization:
save_file(v_head_state_dict, os.path.join(output_dir, V_HEAD_SAFE_WEIGHTS_NAME), metadata={"format": "pt"})
else:
torch.save(v_head_state_dict, os.path.join(output_dir, V_HEAD_WEIGHTS_NAME))
logger.info("Value head model saved at: {}".format(output_dir))
class FixValueHeadModelCallback(TrainerCallback):
def on_save(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
@@ -80,21 +25,12 @@ class FixValueHeadModelCallback(TrainerCallback):
Event called after a checkpoint save.
"""
if args.should_save:
_fix_valuehead_checkpoint(
fix_valuehead_checkpoint(
model=kwargs.pop("model"),
output_dir=os.path.join(args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, state.global_step)),
safe_serialization=args.save_safetensors
)
def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the end of training.
"""
if args.should_save:
_fix_valuehead_checkpoint(
model=kwargs.pop("model"), output_dir=args.output_dir, safe_serialization=args.save_safetensors
)
class LogCallback(TrainerCallback):