support lora target auto find
Former-commit-id: bce9984733d88bf013847eed523d1c75fdf0995e
This commit is contained in:
@@ -12,7 +12,7 @@ from llmtuner.extras.constants import DEFAULT_MODULE, TRAINING_STAGES
|
||||
from llmtuner.extras.logging import LoggerHandler
|
||||
from llmtuner.extras.misc import torch_gc
|
||||
from llmtuner.tuner import run_exp
|
||||
from llmtuner.webui.common import get_model_path, get_save_dir
|
||||
from llmtuner.webui.common import get_model_path, get_save_dir, load_config
|
||||
from llmtuner.webui.locales import ALERTS
|
||||
from llmtuner.webui.utils import gen_cmd, get_eval_results, update_process_bar
|
||||
|
||||
@@ -97,21 +97,25 @@ class Runner:
|
||||
) -> Tuple[str, str, List[str], str, Dict[str, Any]]:
|
||||
if checkpoints:
|
||||
checkpoint_dir = ",".join(
|
||||
[os.path.join(get_save_dir(model_name), finetuning_type, ckpt) for ckpt in checkpoints]
|
||||
[get_save_dir(model_name, finetuning_type, ckpt) for ckpt in checkpoints]
|
||||
)
|
||||
else:
|
||||
checkpoint_dir = None
|
||||
|
||||
output_dir = os.path.join(get_save_dir(model_name), finetuning_type, output_dir)
|
||||
output_dir = get_save_dir(model_name, finetuning_type, output_dir)
|
||||
|
||||
user_config = load_config()
|
||||
cache_dir = user_config.get("cache_dir", None)
|
||||
|
||||
args = dict(
|
||||
stage=TRAINING_STAGES[training_stage],
|
||||
model_name_or_path=get_model_path(model_name),
|
||||
do_train=True,
|
||||
overwrite_cache=True,
|
||||
overwrite_cache=False,
|
||||
cache_dir=cache_dir,
|
||||
checkpoint_dir=checkpoint_dir,
|
||||
finetuning_type=finetuning_type,
|
||||
quantization_bit=int(quantization_bit) if quantization_bit and quantization_bit != "None" else None,
|
||||
quantization_bit=int(quantization_bit) if quantization_bit in ["8", "4"] else None,
|
||||
template=template,
|
||||
system_prompt=system_prompt,
|
||||
dataset_dir=dataset_dir,
|
||||
@@ -172,22 +176,26 @@ class Runner:
|
||||
) -> Tuple[str, str, List[str], str, Dict[str, Any]]:
|
||||
if checkpoints:
|
||||
checkpoint_dir = ",".join(
|
||||
[os.path.join(get_save_dir(model_name), finetuning_type, checkpoint) for checkpoint in checkpoints]
|
||||
[get_save_dir(model_name, finetuning_type, ckpt) for ckpt in checkpoints]
|
||||
)
|
||||
output_dir = os.path.join(get_save_dir(model_name), finetuning_type, "eval_" + "_".join(checkpoints))
|
||||
output_dir = get_save_dir(model_name, finetuning_type, "eval_" + "_".join(checkpoints))
|
||||
else:
|
||||
checkpoint_dir = None
|
||||
output_dir = os.path.join(get_save_dir(model_name), finetuning_type, "eval_base")
|
||||
output_dir = get_save_dir(model_name, finetuning_type, "eval_base")
|
||||
|
||||
user_config = load_config()
|
||||
cache_dir = user_config.get("cache_dir", None)
|
||||
|
||||
args = dict(
|
||||
stage="sft",
|
||||
model_name_or_path=get_model_path(model_name),
|
||||
do_eval=True,
|
||||
overwrite_cache=True,
|
||||
overwrite_cache=False,
|
||||
predict_with_generate=True,
|
||||
cache_dir=cache_dir,
|
||||
checkpoint_dir=checkpoint_dir,
|
||||
finetuning_type=finetuning_type,
|
||||
quantization_bit=int(quantization_bit) if quantization_bit and quantization_bit != "None" else None,
|
||||
quantization_bit=int(quantization_bit) if quantization_bit in ["8", "4"] else None,
|
||||
template=template,
|
||||
system_prompt=system_prompt,
|
||||
dataset_dir=dataset_dir,
|
||||
|
||||
Reference in New Issue
Block a user