support lora target auto find
Former-commit-id: bce9984733d88bf013847eed523d1c75fdf0995e
This commit is contained in:
@@ -12,6 +12,7 @@ from peft.utils import CONFIG_NAME, WEIGHTS_NAME
|
||||
|
||||
from llmtuner.extras.logging import get_logger
|
||||
from llmtuner.extras.save_and_load import load_trainable_params
|
||||
from llmtuner.tuner.core.utils import find_all_linear_modules
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
@@ -81,13 +82,18 @@ def init_adapter(
|
||||
model = PeftModel.from_pretrained(model, latest_checkpoint, is_trainable=is_trainable)
|
||||
|
||||
if is_trainable and latest_checkpoint is None: # create new lora weights while training
|
||||
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target == "all":
|
||||
target_modules = find_all_linear_modules(model, model_args.quantization_bit)
|
||||
else:
|
||||
target_modules = finetuning_args.lora_target
|
||||
|
||||
lora_config = LoraConfig(
|
||||
task_type=TaskType.CAUSAL_LM,
|
||||
inference_mode=False,
|
||||
r=finetuning_args.lora_rank,
|
||||
lora_alpha=finetuning_args.lora_alpha,
|
||||
lora_dropout=finetuning_args.lora_dropout,
|
||||
target_modules=finetuning_args.lora_target
|
||||
target_modules=target_modules
|
||||
)
|
||||
model = get_peft_model(model, lora_config)
|
||||
|
||||
|
||||
@@ -23,10 +23,11 @@ except ImportError:
|
||||
from transformers.integrations import is_deepspeed_zero3_enabled
|
||||
|
||||
from llmtuner.extras.logging import reset_logging, get_logger
|
||||
from llmtuner.extras.misc import count_parameters, prepare_model_for_training
|
||||
from llmtuner.extras.misc import count_parameters
|
||||
from llmtuner.extras.save_and_load import load_valuehead_params
|
||||
from llmtuner.hparams import FinetuningArguments
|
||||
from llmtuner.tuner.core.adapter import init_adapter
|
||||
from llmtuner.tuner.core.utils import prepare_model_for_training
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedTokenizer
|
||||
|
||||
72
src/llmtuner/tuner/core/utils.py
Normal file
72
src/llmtuner/tuner/core/utils.py
Normal file
@@ -0,0 +1,72 @@
|
||||
import torch
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from llmtuner.extras.constants import LAYERNORM_NAMES
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
|
||||
|
||||
def find_all_linear_modules(
|
||||
model: "PreTrainedModel",
|
||||
quantization_bit: Optional[int] = None,
|
||||
output_layer_name: Optional[str] = "lm_head"
|
||||
) -> List[str]:
|
||||
if quantization_bit is not None:
|
||||
import bitsandbytes as bnb
|
||||
linear_cls = bnb.nn.Linear4bit if quantization_bit == 4 else bnb.nn.Linear8bitLt
|
||||
else:
|
||||
linear_cls = torch.nn.Linear
|
||||
|
||||
module_names = set()
|
||||
for name, module in model.named_modules():
|
||||
if isinstance(module, linear_cls):
|
||||
module_names.add(name.split(".")[-1])
|
||||
|
||||
if output_layer_name in module_names:
|
||||
module_names.pop(output_layer_name)
|
||||
|
||||
return list(module_names)
|
||||
|
||||
|
||||
def prepare_model_for_training(
|
||||
model: "PreTrainedModel",
|
||||
finetuning_type: str,
|
||||
output_layer_name: Optional[str] = "lm_head",
|
||||
use_gradient_checkpointing: Optional[bool] = True,
|
||||
layer_norm_names: Optional[List[str]] = LAYERNORM_NAMES
|
||||
) -> "PreTrainedModel":
|
||||
r"""
|
||||
Includes:
|
||||
(1) cast the layernorm in fp32
|
||||
(2) make output embedding layer require grads
|
||||
(3) upcast the lm_head to fp32
|
||||
Inspired by: https://github.com/huggingface/peft/blob/v0.2.0/src/peft/utils/other.py#L33
|
||||
"""
|
||||
for name, param in model.named_parameters():
|
||||
if param.ndim == 1 and any(layer_norm_name in name for layer_norm_name in layer_norm_names):
|
||||
param.data = param.data.to(torch.float32)
|
||||
|
||||
if use_gradient_checkpointing:
|
||||
if hasattr(model, "enable_input_require_grads"):
|
||||
model.enable_input_require_grads()
|
||||
else:
|
||||
def make_inputs_require_grad(module, input, output):
|
||||
output.requires_grad_(True)
|
||||
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
|
||||
|
||||
model.gradient_checkpointing_enable()
|
||||
model.config.use_cache = False # turn off when gradient checkpointing is enabled
|
||||
|
||||
if finetuning_type != "full" and hasattr(model, output_layer_name):
|
||||
output_layer: torch.nn.Linear = getattr(model, output_layer_name)
|
||||
input_dtype = output_layer.weight.dtype
|
||||
|
||||
class CastOutputToFloat(torch.nn.Sequential):
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return super().forward(x.to(input_dtype)).to(torch.float32)
|
||||
|
||||
setattr(model, output_layer_name, CastOutputToFloat(output_layer))
|
||||
|
||||
return model
|
||||
Reference in New Issue
Block a user