support unsloth
Former-commit-id: b857f00234b90b785d82ca7cdb29af3d948b1a7b
This commit is contained in:
@@ -16,7 +16,7 @@ class CustomDPOTrainer(DPOTrainer):
|
||||
def __init__(
|
||||
self,
|
||||
beta: float,
|
||||
loss_type: Literal["sigmoid", "hinge"],
|
||||
loss_type: Literal["sigmoid", "hinge", "ipo", "kto"],
|
||||
ftx_gamma: float,
|
||||
model: Union["PreTrainedModel", torch.nn.Module],
|
||||
ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]] = None,
|
||||
@@ -28,16 +28,20 @@ class CustomDPOTrainer(DPOTrainer):
|
||||
if ref_model is not None:
|
||||
disable_dropout_in_model(ref_model)
|
||||
|
||||
self.is_encoder_decoder = model.config.is_encoder_decoder
|
||||
self.ref_model = ref_model
|
||||
self.use_dpo_data_collator = True # hack to avoid warning
|
||||
self.generate_during_eval = False # disable at evaluation
|
||||
self.label_pad_token_id = IGNORE_INDEX
|
||||
self.padding_value = 0
|
||||
self.is_encoder_decoder = model.config.is_encoder_decoder
|
||||
self.precompute_ref_log_probs = False
|
||||
self._precomputed_train_ref_log_probs = False
|
||||
self._precomputed_eval_ref_log_probs = False
|
||||
|
||||
self.ref_model = ref_model
|
||||
self.beta = beta
|
||||
self.label_smoothing = 0
|
||||
self.ftx_gamma = ftx_gamma
|
||||
self.loss_type = loss_type
|
||||
self.ftx_gamma = ftx_gamma
|
||||
self._stored_metrics = defaultdict(lambda: defaultdict(list))
|
||||
|
||||
Trainer.__init__(self, model=model, **kwargs)
|
||||
@@ -95,7 +99,7 @@ class CustomDPOTrainer(DPOTrainer):
|
||||
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
|
||||
return chosen_logps, rejected_logps, chosen_logits, rejected_logits
|
||||
|
||||
def get_batch_metrics(
|
||||
def get_batch_loss_metrics(
|
||||
self,
|
||||
model: "PreTrainedModel",
|
||||
batch: Dict[str, torch.Tensor],
|
||||
|
||||
@@ -37,7 +37,7 @@ def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["Tra
|
||||
def export_model(args: Optional[Dict[str, Any]] = None):
|
||||
model_args, _, finetuning_args, _ = get_infer_args(args)
|
||||
|
||||
if model_args.adapter_name_or_path is not None and finetuning_args.export_quantization_bit is not None:
|
||||
if model_args.adapter_name_or_path is not None and model_args.export_quantization_bit is not None:
|
||||
raise ValueError("Please merge adapters before quantizing the model.")
|
||||
|
||||
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
|
||||
@@ -47,12 +47,12 @@ def export_model(args: Optional[Dict[str, Any]] = None):
|
||||
|
||||
model.config.use_cache = True
|
||||
model = model.to("cpu")
|
||||
model.save_pretrained(finetuning_args.export_dir, max_shard_size="{}GB".format(finetuning_args.export_size))
|
||||
model.save_pretrained(model_args.export_dir, max_shard_size="{}GB".format(model_args.export_size))
|
||||
|
||||
try:
|
||||
tokenizer.padding_side = "left" # restore padding side
|
||||
tokenizer.init_kwargs["padding_side"] = "left"
|
||||
tokenizer.save_pretrained(finetuning_args.export_dir)
|
||||
tokenizer.save_pretrained(model_args.export_dir)
|
||||
except:
|
||||
logger.warning("Cannot save tokenizer, please copy the files manually.")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user