support unsloth

Former-commit-id: b857f00234b90b785d82ca7cdb29af3d948b1a7b
This commit is contained in:
hiyouga
2023-12-23 00:14:33 +08:00
parent 1066898e32
commit 6faf9c35a9
11 changed files with 224 additions and 171 deletions

View File

@@ -16,7 +16,7 @@ class CustomDPOTrainer(DPOTrainer):
def __init__(
self,
beta: float,
loss_type: Literal["sigmoid", "hinge"],
loss_type: Literal["sigmoid", "hinge", "ipo", "kto"],
ftx_gamma: float,
model: Union["PreTrainedModel", torch.nn.Module],
ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]] = None,
@@ -28,16 +28,20 @@ class CustomDPOTrainer(DPOTrainer):
if ref_model is not None:
disable_dropout_in_model(ref_model)
self.is_encoder_decoder = model.config.is_encoder_decoder
self.ref_model = ref_model
self.use_dpo_data_collator = True # hack to avoid warning
self.generate_during_eval = False # disable at evaluation
self.label_pad_token_id = IGNORE_INDEX
self.padding_value = 0
self.is_encoder_decoder = model.config.is_encoder_decoder
self.precompute_ref_log_probs = False
self._precomputed_train_ref_log_probs = False
self._precomputed_eval_ref_log_probs = False
self.ref_model = ref_model
self.beta = beta
self.label_smoothing = 0
self.ftx_gamma = ftx_gamma
self.loss_type = loss_type
self.ftx_gamma = ftx_gamma
self._stored_metrics = defaultdict(lambda: defaultdict(list))
Trainer.__init__(self, model=model, **kwargs)
@@ -95,7 +99,7 @@ class CustomDPOTrainer(DPOTrainer):
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
return chosen_logps, rejected_logps, chosen_logits, rejected_logits
def get_batch_metrics(
def get_batch_loss_metrics(
self,
model: "PreTrainedModel",
batch: Dict[str, torch.Tensor],

View File

@@ -37,7 +37,7 @@ def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["Tra
def export_model(args: Optional[Dict[str, Any]] = None):
model_args, _, finetuning_args, _ = get_infer_args(args)
if model_args.adapter_name_or_path is not None and finetuning_args.export_quantization_bit is not None:
if model_args.adapter_name_or_path is not None and model_args.export_quantization_bit is not None:
raise ValueError("Please merge adapters before quantizing the model.")
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
@@ -47,12 +47,12 @@ def export_model(args: Optional[Dict[str, Any]] = None):
model.config.use_cache = True
model = model.to("cpu")
model.save_pretrained(finetuning_args.export_dir, max_shard_size="{}GB".format(finetuning_args.export_size))
model.save_pretrained(model_args.export_dir, max_shard_size="{}GB".format(model_args.export_size))
try:
tokenizer.padding_side = "left" # restore padding side
tokenizer.init_kwargs["padding_side"] = "left"
tokenizer.save_pretrained(finetuning_args.export_dir)
tokenizer.save_pretrained(model_args.export_dir)
except:
logger.warning("Cannot save tokenizer, please copy the files manually.")