support unsloth

Former-commit-id: b857f00234b90b785d82ca7cdb29af3d948b1a7b
This commit is contained in:
hiyouga
2023-12-23 00:14:33 +08:00
parent 1066898e32
commit 6faf9c35a9
11 changed files with 224 additions and 171 deletions

View File

@@ -4,10 +4,10 @@ from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.utils.versions import require_version
from trl import AutoModelForCausalLMWithValueHead
import llmtuner.model.patcher as patcher
from llmtuner.extras.logging import get_logger
from llmtuner.extras.misc import count_parameters, try_download_model_from_ms
from llmtuner.extras.misc import count_parameters, get_current_device, try_download_model_from_ms
from llmtuner.model.adapter import init_adapter
from llmtuner.model.patcher import patch_config, patch_tokenizer, patch_model, patch_valuehead_model
from llmtuner.model.utils import (
load_valuehead_params, prepare_model_for_training, resize_embedding_layer, register_autoclass
)
@@ -24,7 +24,7 @@ require_version("transformers>=4.36.2", "To fix: pip install transformers>=4.36.
require_version("datasets>=2.14.3", "To fix: pip install datasets>=2.14.3")
require_version("accelerate>=0.21.0", "To fix: pip install accelerate>=0.21.0")
require_version("peft>=0.7.0", "To fix: pip install peft>=0.7.0")
require_version("trl==0.7.4", "To fix: pip install trl==0.7.4")
require_version("trl>=0.7.6", "To fix: pip install trl>=0.7.6")
def load_model_and_tokenizer(
@@ -52,26 +52,48 @@ def load_model_and_tokenizer(
model_args.model_name_or_path,
use_fast=model_args.use_fast_tokenizer,
split_special_tokens=model_args.split_special_tokens,
padding_side="right", # training with left-padded tensors in fp16 precision may cause overflow
padding_side="right",
**config_kwargs
)
patch_tokenizer(tokenizer)
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
patch_config(config, tokenizer, model_args, config_kwargs, is_trainable)
patcher.patch_tokenizer(tokenizer)
patcher.patch_config(config, model_args)
patcher.configure_rope(config, model_args, is_trainable)
patcher.configure_flashattn(config_kwargs, model_args)
patcher.configure_longlora(config, model_args, is_trainable)
patcher.configure_quantization(config, config_kwargs, tokenizer, model_args, finetuning_args)
model = None
if is_trainable and model_args.use_unsloth:
require_version("unsloth==2023.12", "Follow the instructions at: https://github.com/unslothai/unsloth")
from unsloth import FastLlamaModel, FastMistralModel # type: ignore
unsloth_kwargs = {
"model_name": model_args.model_name_or_path,
"max_seq_length": model_args.model_max_length,
"load_in_4bit": model_args.quantization_bit == 4,
"token": model_args.hf_hub_token,
"device_map": get_current_device(),
"rope_scaling": getattr(config, "rope_scaling", None)
}
if getattr(config, "model_type", None) == "llama":
model, _ = FastLlamaModel.from_pretrained(**unsloth_kwargs)
elif getattr(config, "model_type", None) == "mistral":
model, _ = FastMistralModel.from_pretrained(**unsloth_kwargs)
else:
logger.warning("Unsloth does not support model type {}.".format(getattr(config, "model_type", None)))
model_args.use_unsloth = False
if model_args.adapter_name_or_path:
model_args.adapter_name_or_path = None
logger.warning("Unsloth does not support loading adapters.")
if model is None:
model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
config=config,
low_cpu_mem_usage=(not is_deepspeed_zero3_enabled()),
**config_kwargs
)
model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
config=config,
low_cpu_mem_usage=(not is_deepspeed_zero3_enabled()),
**config_kwargs
)
model = model.to(model_args.compute_dtype) if not getattr(model, "quantization_method", None) else model
patcher.patch_model(model)
patch_model(model)
register_autoclass(config, model, tokenizer)
if not is_deepspeed_zero3_enabled():
resize_embedding_layer(model, tokenizer)
@@ -81,7 +103,7 @@ def load_model_and_tokenizer(
if add_valuehead:
model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(model)
patcher.patch_valuehead_model(model)
patch_valuehead_model(model)
if model_args.adapter_name_or_path is not None:
vhead_path = model_args.adapter_name_or_path[-1]
@@ -94,7 +116,7 @@ def load_model_and_tokenizer(
logger.info("Loaded valuehead from checkpoint: {}".format(vhead_path))
if not is_trainable:
model.requires_grad_(False) # fix all model params
model.requires_grad_(False)
model.eval()
else:
model.train()