format style
Former-commit-id: 53b683531b83cd1d19de97c6565f16c1eca6f5e1
This commit is contained in:
@@ -1,12 +1,14 @@
|
||||
import gradio as gr
|
||||
from typing import TYPE_CHECKING, Dict
|
||||
|
||||
import gradio as gr
|
||||
from transformers.trainer_utils import SchedulerType
|
||||
|
||||
from ...extras.constants import TRAINING_STAGES
|
||||
from ..common import list_adapters, list_dataset, DEFAULT_DATA_DIR
|
||||
from ..common import DEFAULT_DATA_DIR, list_adapters, list_dataset
|
||||
from ..components.data import create_preview_box
|
||||
from ..utils import gen_plot
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from gradio.components import Component
|
||||
|
||||
@@ -29,9 +31,7 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
|
||||
dataset_dir.change(list_dataset, [dataset_dir, training_stage], [dataset], queue=False)
|
||||
|
||||
input_elems.update({training_stage, dataset_dir, dataset})
|
||||
elem_dict.update(dict(
|
||||
training_stage=training_stage, dataset_dir=dataset_dir, dataset=dataset, **preview_elems
|
||||
))
|
||||
elem_dict.update(dict(training_stage=training_stage, dataset_dir=dataset_dir, dataset=dataset, **preview_elems))
|
||||
|
||||
with gr.Row():
|
||||
cutoff_len = gr.Slider(value=1024, minimum=4, maximum=8192, step=1)
|
||||
@@ -41,25 +41,33 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
|
||||
compute_type = gr.Radio(choices=["fp16", "bf16", "fp32"], value="fp16")
|
||||
|
||||
input_elems.update({cutoff_len, learning_rate, num_train_epochs, max_samples, compute_type})
|
||||
elem_dict.update(dict(
|
||||
cutoff_len=cutoff_len, learning_rate=learning_rate, num_train_epochs=num_train_epochs,
|
||||
max_samples=max_samples, compute_type=compute_type
|
||||
))
|
||||
elem_dict.update(
|
||||
dict(
|
||||
cutoff_len=cutoff_len,
|
||||
learning_rate=learning_rate,
|
||||
num_train_epochs=num_train_epochs,
|
||||
max_samples=max_samples,
|
||||
compute_type=compute_type,
|
||||
)
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
batch_size = gr.Slider(value=4, minimum=1, maximum=512, step=1)
|
||||
gradient_accumulation_steps = gr.Slider(value=4, minimum=1, maximum=512, step=1)
|
||||
lr_scheduler_type = gr.Dropdown(
|
||||
choices=[scheduler.value for scheduler in SchedulerType], value="cosine"
|
||||
)
|
||||
lr_scheduler_type = gr.Dropdown(choices=[scheduler.value for scheduler in SchedulerType], value="cosine")
|
||||
max_grad_norm = gr.Textbox(value="1.0")
|
||||
val_size = gr.Slider(value=0, minimum=0, maximum=1, step=0.001)
|
||||
|
||||
input_elems.update({batch_size, gradient_accumulation_steps, lr_scheduler_type, max_grad_norm, val_size})
|
||||
elem_dict.update(dict(
|
||||
batch_size=batch_size, gradient_accumulation_steps=gradient_accumulation_steps,
|
||||
lr_scheduler_type=lr_scheduler_type, max_grad_norm=max_grad_norm, val_size=val_size
|
||||
))
|
||||
elem_dict.update(
|
||||
dict(
|
||||
batch_size=batch_size,
|
||||
gradient_accumulation_steps=gradient_accumulation_steps,
|
||||
lr_scheduler_type=lr_scheduler_type,
|
||||
max_grad_norm=max_grad_norm,
|
||||
val_size=val_size,
|
||||
)
|
||||
)
|
||||
|
||||
with gr.Accordion(label="Extra config", open=False) as extra_tab:
|
||||
with gr.Row():
|
||||
@@ -73,10 +81,17 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
|
||||
upcast_layernorm = gr.Checkbox(value=False)
|
||||
|
||||
input_elems.update({logging_steps, save_steps, warmup_steps, neftune_alpha, sft_packing, upcast_layernorm})
|
||||
elem_dict.update(dict(
|
||||
extra_tab=extra_tab, logging_steps=logging_steps, save_steps=save_steps, warmup_steps=warmup_steps,
|
||||
neftune_alpha=neftune_alpha, sft_packing=sft_packing, upcast_layernorm=upcast_layernorm
|
||||
))
|
||||
elem_dict.update(
|
||||
dict(
|
||||
extra_tab=extra_tab,
|
||||
logging_steps=logging_steps,
|
||||
save_steps=save_steps,
|
||||
warmup_steps=warmup_steps,
|
||||
neftune_alpha=neftune_alpha,
|
||||
sft_packing=sft_packing,
|
||||
upcast_layernorm=upcast_layernorm,
|
||||
)
|
||||
)
|
||||
|
||||
with gr.Accordion(label="LoRA config", open=False) as lora_tab:
|
||||
with gr.Row():
|
||||
@@ -87,10 +102,16 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
|
||||
create_new_adapter = gr.Checkbox(scale=1)
|
||||
|
||||
input_elems.update({lora_rank, lora_dropout, lora_target, additional_target, create_new_adapter})
|
||||
elem_dict.update(dict(
|
||||
lora_tab=lora_tab, lora_rank=lora_rank, lora_dropout=lora_dropout, lora_target=lora_target,
|
||||
additional_target=additional_target, create_new_adapter=create_new_adapter
|
||||
))
|
||||
elem_dict.update(
|
||||
dict(
|
||||
lora_tab=lora_tab,
|
||||
lora_rank=lora_rank,
|
||||
lora_dropout=lora_dropout,
|
||||
lora_target=lora_target,
|
||||
additional_target=additional_target,
|
||||
create_new_adapter=create_new_adapter,
|
||||
)
|
||||
)
|
||||
|
||||
with gr.Accordion(label="RLHF config", open=False) as rlhf_tab:
|
||||
with gr.Row():
|
||||
@@ -103,13 +124,13 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
|
||||
list_adapters,
|
||||
[engine.manager.get_elem_by_name("top.model_name"), engine.manager.get_elem_by_name("top.finetuning_type")],
|
||||
[reward_model],
|
||||
queue=False
|
||||
queue=False,
|
||||
)
|
||||
|
||||
input_elems.update({dpo_beta, dpo_ftx, reward_model})
|
||||
elem_dict.update(dict(
|
||||
rlhf_tab=rlhf_tab, dpo_beta=dpo_beta, dpo_ftx=dpo_ftx, reward_model=reward_model, refresh_btn=refresh_btn
|
||||
))
|
||||
elem_dict.update(
|
||||
dict(rlhf_tab=rlhf_tab, dpo_beta=dpo_beta, dpo_ftx=dpo_ftx, reward_model=reward_model, refresh_btn=refresh_btn)
|
||||
)
|
||||
|
||||
with gr.Row():
|
||||
cmd_preview_btn = gr.Button()
|
||||
@@ -139,20 +160,28 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
|
||||
stop_btn.click(engine.runner.set_abort, queue=False)
|
||||
resume_btn.change(engine.runner.monitor, outputs=output_elems)
|
||||
|
||||
elem_dict.update(dict(
|
||||
cmd_preview_btn=cmd_preview_btn, start_btn=start_btn, stop_btn=stop_btn, output_dir=output_dir,
|
||||
resume_btn=resume_btn, process_bar=process_bar, output_box=output_box, loss_viewer=loss_viewer
|
||||
))
|
||||
elem_dict.update(
|
||||
dict(
|
||||
cmd_preview_btn=cmd_preview_btn,
|
||||
start_btn=start_btn,
|
||||
stop_btn=stop_btn,
|
||||
output_dir=output_dir,
|
||||
resume_btn=resume_btn,
|
||||
process_bar=process_bar,
|
||||
output_box=output_box,
|
||||
loss_viewer=loss_viewer,
|
||||
)
|
||||
)
|
||||
|
||||
output_box.change(
|
||||
gen_plot,
|
||||
[
|
||||
engine.manager.get_elem_by_name("top.model_name"),
|
||||
engine.manager.get_elem_by_name("top.finetuning_type"),
|
||||
output_dir
|
||||
output_dir,
|
||||
],
|
||||
loss_viewer,
|
||||
queue=False
|
||||
queue=False,
|
||||
)
|
||||
|
||||
return elem_dict
|
||||
|
||||
Reference in New Issue
Block a user