format style

Former-commit-id: 53b683531b83cd1d19de97c6565f16c1eca6f5e1
This commit is contained in:
hiyouga
2024-01-20 20:15:56 +08:00
parent 1750218057
commit 66e0e651b9
73 changed files with 1492 additions and 2325 deletions

View File

@@ -1,14 +1,16 @@
import os
import json
import torch
import numpy as np
import torch.nn as nn
import os
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
from transformers import Seq2SeqTrainer
from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger
if TYPE_CHECKING:
from transformers.trainer import PredictionOutput
@@ -33,16 +35,16 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
Subclass and override to inject custom behavior.
"""
labels = inputs["labels"].detach().clone() if "labels" in inputs else None # backup labels
labels = inputs["labels"].detach().clone() if "labels" in inputs else None # backup labels
if self.args.predict_with_generate:
assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor."
prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1)
if prompt_len > label_len:
inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"])
if label_len > prompt_len: # truncate the labels instead of padding the inputs (llama2 fp16 compatibility)
if label_len > prompt_len: # truncate the labels instead of padding the inputs (llama2 fp16 compatibility)
inputs["labels"] = inputs["labels"][:, :prompt_len]
loss, generated_tokens, _ = super().prediction_step( # ignore the returned labels (may be truncated)
loss, generated_tokens, _ = super().prediction_step( # ignore the returned labels (may be truncated)
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
)
if generated_tokens is not None and self.args.predict_with_generate:
@@ -51,23 +53,16 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
return loss, generated_tokens, labels
def _pad_tensors_to_target_len(
self,
src_tensor: torch.Tensor,
tgt_tensor: torch.Tensor
) -> torch.Tensor:
def _pad_tensors_to_target_len(self, src_tensor: torch.Tensor, tgt_tensor: torch.Tensor) -> torch.Tensor:
r"""
Pads the tensor to the same length as the target tensor.
"""
assert self.tokenizer.pad_token_id is not None, "Pad token is required."
padded_tensor = self.tokenizer.pad_token_id * torch.ones_like(tgt_tensor)
padded_tensor[:, -src_tensor.shape[-1]:] = src_tensor # adopt left-padding
return padded_tensor.contiguous() # in contiguous memory
padded_tensor[:, -src_tensor.shape[-1] :] = src_tensor # adopt left-padding
return padded_tensor.contiguous() # in contiguous memory
def save_predictions(
self,
predict_results: "PredictionOutput"
) -> None:
def save_predictions(self, predict_results: "PredictionOutput") -> None:
r"""
Saves model predictions to `output_dir`.
@@ -79,15 +74,23 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
logger.info(f"Saving prediction results to {output_prediction_file}")
labels = np.where(predict_results.label_ids != IGNORE_INDEX, predict_results.label_ids, self.tokenizer.pad_token_id)
preds = np.where(predict_results.predictions != IGNORE_INDEX, predict_results.predictions, self.tokenizer.pad_token_id)
labels = np.where(
predict_results.label_ids != IGNORE_INDEX, predict_results.label_ids, self.tokenizer.pad_token_id
)
preds = np.where(
predict_results.predictions != IGNORE_INDEX, predict_results.predictions, self.tokenizer.pad_token_id
)
for i in range(len(preds)):
pad_len = np.nonzero(preds[i] != self.tokenizer.pad_token_id)[0]
if len(pad_len):
preds[i] = np.concatenate((preds[i][pad_len[0]:], preds[i][:pad_len[0]]), axis=-1) # move pad token to last
preds[i] = np.concatenate(
(preds[i][pad_len[0] :], preds[i][: pad_len[0]]), axis=-1
) # move pad token to last
decoded_labels = self.tokenizer.batch_decode(labels, skip_special_tokens=True, clean_up_tokenization_spaces=False)
decoded_labels = self.tokenizer.batch_decode(
labels, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True)
with open(output_prediction_file, "w", encoding="utf-8") as writer: