format style
Former-commit-id: 53b683531b83cd1d19de97c6565f16c1eca6f5e1
This commit is contained in:
@@ -1,4 +1,5 @@
|
||||
from typing import TYPE_CHECKING, Optional, Tuple
|
||||
|
||||
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
||||
from transformers.integrations import is_deepspeed_zero3_enabled
|
||||
from transformers.utils.versions import require_version
|
||||
@@ -7,12 +8,14 @@ from trl import AutoModelForCausalLMWithValueHead
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.misc import count_parameters, get_current_device, try_download_model_from_ms
|
||||
from .adapter import init_adapter
|
||||
from .patcher import patch_config, patch_tokenizer, patch_model, patch_valuehead_model
|
||||
from .patcher import patch_config, patch_model, patch_tokenizer, patch_valuehead_model
|
||||
from .utils import load_valuehead_params, register_autoclass
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizer
|
||||
from ..hparams import ModelArguments, FinetuningArguments
|
||||
|
||||
from ..hparams import FinetuningArguments, ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
@@ -29,7 +32,7 @@ def load_model_and_tokenizer(
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: Optional[bool] = False,
|
||||
add_valuehead: Optional[bool] = False
|
||||
add_valuehead: Optional[bool] = False,
|
||||
) -> Tuple["PreTrainedModel", "PreTrainedTokenizer"]:
|
||||
r"""
|
||||
Loads pretrained model and tokenizer.
|
||||
@@ -43,7 +46,7 @@ def load_model_and_tokenizer(
|
||||
"trust_remote_code": True,
|
||||
"cache_dir": model_args.cache_dir,
|
||||
"revision": model_args.model_revision,
|
||||
"token": model_args.hf_hub_token
|
||||
"token": model_args.hf_hub_token,
|
||||
}
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
@@ -51,7 +54,7 @@ def load_model_and_tokenizer(
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
split_special_tokens=model_args.split_special_tokens,
|
||||
padding_side="right",
|
||||
**config_kwargs
|
||||
**config_kwargs,
|
||||
)
|
||||
patch_tokenizer(tokenizer)
|
||||
|
||||
@@ -61,7 +64,8 @@ def load_model_and_tokenizer(
|
||||
model = None
|
||||
if is_trainable and model_args.use_unsloth:
|
||||
require_version("unsloth", "Follow the instructions at: https://github.com/unslothai/unsloth")
|
||||
from unsloth import FastLlamaModel, FastMistralModel # type: ignore
|
||||
from unsloth import FastLlamaModel, FastMistralModel # type: ignore
|
||||
|
||||
unsloth_kwargs = {
|
||||
"model_name": model_args.model_name_or_path,
|
||||
"max_seq_length": model_args.model_max_length,
|
||||
@@ -69,7 +73,7 @@ def load_model_and_tokenizer(
|
||||
"load_in_4bit": model_args.quantization_bit == 4,
|
||||
"token": model_args.hf_hub_token,
|
||||
"device_map": get_current_device(),
|
||||
"rope_scaling": getattr(config, "rope_scaling", None)
|
||||
"rope_scaling": getattr(config, "rope_scaling", None),
|
||||
}
|
||||
if getattr(config, "model_type", None) == "llama":
|
||||
model, _ = FastLlamaModel.from_pretrained(**unsloth_kwargs)
|
||||
@@ -89,7 +93,7 @@ def load_model_and_tokenizer(
|
||||
config=config,
|
||||
torch_dtype=model_args.compute_dtype,
|
||||
low_cpu_mem_usage=(not is_deepspeed_zero3_enabled()),
|
||||
**config_kwargs
|
||||
**config_kwargs,
|
||||
)
|
||||
|
||||
patch_model(model, tokenizer, model_args, is_trainable)
|
||||
@@ -119,9 +123,11 @@ def load_model_and_tokenizer(
|
||||
model.train()
|
||||
|
||||
trainable_params, all_param = count_parameters(model)
|
||||
logger.info("trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
|
||||
trainable_params, all_param, 100 * trainable_params / all_param
|
||||
))
|
||||
logger.info(
|
||||
"trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
|
||||
trainable_params, all_param, 100 * trainable_params / all_param
|
||||
)
|
||||
)
|
||||
|
||||
if not is_trainable:
|
||||
logger.info("This IS expected that the trainable params is 0 if you are using model for inference only.")
|
||||
|
||||
Reference in New Issue
Block a user