format style

Former-commit-id: 53b683531b83cd1d19de97c6565f16c1eca6f5e1
This commit is contained in:
hiyouga
2024-01-20 20:15:56 +08:00
parent 1750218057
commit 66e0e651b9
73 changed files with 1492 additions and 2325 deletions

View File

@@ -1,6 +1,6 @@
import json
from typing import Literal, Optional
from dataclasses import asdict, dataclass, field
from typing import Literal, Optional
@dataclass
@@ -10,17 +10,18 @@ class FreezeArguments:
"""
name_module_trainable: Optional[str] = field(
default="mlp",
metadata={"help": "Name of trainable modules for partial-parameter (freeze) fine-tuning. \
metadata={
"help": 'Name of trainable modules for partial-parameter (freeze) fine-tuning. \
Use commas to separate multiple modules. \
LLaMA choices: [\"mlp\", \"self_attn\"], \
BLOOM & Falcon & ChatGLM choices: [\"mlp\", \"self_attention\"], \
Qwen choices: [\"mlp\", \"attn\"], \
Phi choices: [\"mlp\", \"mixer\"], \
Others choices: the same as LLaMA."}
LLaMA choices: ["mlp", "self_attn"], \
BLOOM & Falcon & ChatGLM choices: ["mlp", "self_attention"], \
Qwen choices: ["mlp", "attn"], \
Phi choices: ["mlp", "mixer"], \
Others choices: the same as LLaMA.'
},
)
num_layer_trainable: Optional[int] = field(
default=3,
metadata={"help": "The number of trainable layers for partial-parameter (freeze) fine-tuning."}
default=3, metadata={"help": "The number of trainable layers for partial-parameter (freeze) fine-tuning."}
)
@@ -31,37 +32,32 @@ class LoraArguments:
"""
additional_target: Optional[str] = field(
default=None,
metadata={"help": "Name(s) of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint."}
metadata={
"help": "Name(s) of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint."
},
)
lora_alpha: Optional[int] = field(
default=None,
metadata={"help": "The scale factor for LoRA fine-tuning (default: lora_rank * 2)."}
)
lora_dropout: Optional[float] = field(
default=0.0,
metadata={"help": "Dropout rate for the LoRA fine-tuning."}
)
lora_rank: Optional[int] = field(
default=8,
metadata={"help": "The intrinsic dimension for LoRA fine-tuning."}
default=None, metadata={"help": "The scale factor for LoRA fine-tuning (default: lora_rank * 2)."}
)
lora_dropout: Optional[float] = field(default=0.0, metadata={"help": "Dropout rate for the LoRA fine-tuning."})
lora_rank: Optional[int] = field(default=8, metadata={"help": "The intrinsic dimension for LoRA fine-tuning."})
lora_target: Optional[str] = field(
default=None,
metadata={"help": "Name(s) of target modules to apply LoRA. Use commas to separate multiple modules. \
LLaMA choices: [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \
BLOOM & Falcon & ChatGLM choices: [\"query_key_value\", \"dense\", \"dense_h_to_4h\", \"dense_4h_to_h\"], \
Baichuan choices: [\"W_pack\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \
Qwen choices: [\"c_attn\", \"attn.c_proj\", \"w1\", \"w2\", \"mlp.c_proj\"], \
Phi choices: [\"Wqkv\", \"out_proj\", \"fc1\", \"fc2\"], \
Others choices: the same as LLaMA."}
metadata={
"help": 'Name(s) of target modules to apply LoRA. Use commas to separate multiple modules. \
LLaMA choices: ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], \
BLOOM & Falcon & ChatGLM choices: ["query_key_value", "dense", "dense_h_to_4h", "dense_4h_to_h"], \
Baichuan choices: ["W_pack", "o_proj", "gate_proj", "up_proj", "down_proj"], \
Qwen choices: ["c_attn", "attn.c_proj", "w1", "w2", "mlp.c_proj"], \
Phi choices: ["Wqkv", "out_proj", "fc1", "fc2"], \
Others choices: the same as LLaMA.'
},
)
lora_bf16_mode: Optional[bool] = field(
default=False,
metadata={"help": "Whether or not to train lora adapters in bf16 precision."}
default=False, metadata={"help": "Whether or not to train lora adapters in bf16 precision."}
)
create_new_adapter: Optional[bool] = field(
default=False,
metadata={"help": "Whether or not to create a new adapter with randomly initialized weight."}
default=False, metadata={"help": "Whether or not to create a new adapter with randomly initialized weight."}
)
@@ -70,69 +66,53 @@ class RLHFArguments:
r"""
Arguments pertaining to the PPO and DPO training.
"""
dpo_beta: Optional[float] = field(
default=0.1,
metadata={"help": "The beta parameter for the DPO loss."}
)
dpo_beta: Optional[float] = field(default=0.1, metadata={"help": "The beta parameter for the DPO loss."})
dpo_loss: Optional[Literal["sigmoid", "hinge", "ipo", "kto"]] = field(
default="sigmoid",
metadata={"help": "The type of DPO loss to use."}
default="sigmoid", metadata={"help": "The type of DPO loss to use."}
)
dpo_ftx: Optional[float] = field(
default=0,
metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."}
default=0, metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."}
)
ppo_buffer_size: Optional[int] = field(
default=1,
metadata={"help": "The number of mini-batches to make experience buffer in a PPO optimization step."}
metadata={"help": "The number of mini-batches to make experience buffer in a PPO optimization step."},
)
ppo_epochs: Optional[int] = field(
default=4,
metadata={"help": "The number of epochs to perform in a PPO optimization step."}
default=4, metadata={"help": "The number of epochs to perform in a PPO optimization step."}
)
ppo_logger: Optional[str] = field(
default=None,
metadata={"help": "Log with either \"wandb\" or \"tensorboard\" in PPO training."}
default=None, metadata={"help": 'Log with either "wandb" or "tensorboard" in PPO training.'}
)
ppo_score_norm: Optional[bool] = field(
default=False,
metadata={"help": "Use score normalization in PPO training."}
default=False, metadata={"help": "Use score normalization in PPO training."}
)
ppo_target: Optional[float] = field(
default=6.0,
metadata={"help": "Target KL value for adaptive KL control in PPO training."}
default=6.0, metadata={"help": "Target KL value for adaptive KL control in PPO training."}
)
ppo_whiten_rewards: Optional[bool] = field(
default=False,
metadata={"help": "Whiten the rewards before compute advantages in PPO training."}
default=False, metadata={"help": "Whiten the rewards before compute advantages in PPO training."}
)
ref_model: Optional[str] = field(
default=None,
metadata={"help": "Path to the reference model used for the PPO or DPO training."}
default=None, metadata={"help": "Path to the reference model used for the PPO or DPO training."}
)
ref_model_adapters: Optional[str] = field(
default=None,
metadata={"help": "Path to the adapters of the reference model."}
default=None, metadata={"help": "Path to the adapters of the reference model."}
)
ref_model_quantization_bit: Optional[int] = field(
default=None,
metadata={"help": "The number of bits to quantize the reference model."}
default=None, metadata={"help": "The number of bits to quantize the reference model."}
)
reward_model: Optional[str] = field(
default=None,
metadata={"help": "Path to the reward model used for the PPO training."}
default=None, metadata={"help": "Path to the reward model used for the PPO training."}
)
reward_model_adapters: Optional[str] = field(
default=None,
metadata={"help": "Path to the adapters of the reward model."}
default=None, metadata={"help": "Path to the adapters of the reward model."}
)
reward_model_quantization_bit: Optional[int] = field(
default=None,
metadata={"help": "The number of bits to quantize the reward model."}
default=None, metadata={"help": "The number of bits to quantize the reward model."}
)
reward_model_type: Optional[Literal["lora", "full", "api"]] = field(
default="lora",
metadata={"help": "The type of the reward model in PPO training. Lora model only supports lora training."}
metadata={"help": "The type of the reward model in PPO training. Lora model only supports lora training."},
)
@@ -142,16 +122,13 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments):
Arguments pertaining to which techniques we are going to fine-tuning with.
"""
stage: Optional[Literal["pt", "sft", "rm", "ppo", "dpo"]] = field(
default="sft",
metadata={"help": "Which stage will be performed in training."}
default="sft", metadata={"help": "Which stage will be performed in training."}
)
finetuning_type: Optional[Literal["lora", "freeze", "full"]] = field(
default="lora",
metadata={"help": "Which fine-tuning method to use."}
default="lora", metadata={"help": "Which fine-tuning method to use."}
)
plot_loss: Optional[bool] = field(
default=False,
metadata={"help": "Whether or not to save the training loss curves."}
default=False, metadata={"help": "Whether or not to save the training loss curves."}
)
def __post_init__(self):