format style
Former-commit-id: 53b683531b83cd1d19de97c6565f16c1eca6f5e1
This commit is contained in:
@@ -3,7 +3,7 @@ from .evaluation_args import EvaluationArguments
|
||||
from .finetuning_args import FinetuningArguments
|
||||
from .generating_args import GeneratingArguments
|
||||
from .model_args import ModelArguments
|
||||
from .parser import get_train_args, get_infer_args, get_eval_args
|
||||
from .parser import get_eval_args, get_infer_args, get_train_args
|
||||
|
||||
|
||||
__all__ = [
|
||||
@@ -14,5 +14,5 @@ __all__ = [
|
||||
"ModelArguments",
|
||||
"get_train_args",
|
||||
"get_infer_args",
|
||||
"get_eval_args"
|
||||
"get_eval_args",
|
||||
]
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from typing import Literal, Optional
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Literal, Optional
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -8,80 +8,66 @@ class DataArguments:
|
||||
Arguments pertaining to what data we are going to input our model for training and evaluation.
|
||||
"""
|
||||
template: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Which template to use for constructing prompts in training and inference."}
|
||||
default=None, metadata={"help": "Which template to use for constructing prompts in training and inference."}
|
||||
)
|
||||
dataset: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "The name of provided dataset(s) to use. Use commas to separate multiple datasets."}
|
||||
metadata={"help": "The name of provided dataset(s) to use. Use commas to separate multiple datasets."},
|
||||
)
|
||||
dataset_dir: Optional[str] = field(
|
||||
default="data",
|
||||
metadata={"help": "Path to the folder containing the datasets."}
|
||||
default="data", metadata={"help": "Path to the folder containing the datasets."}
|
||||
)
|
||||
split: Optional[str] = field(
|
||||
default="train",
|
||||
metadata={"help": "Which dataset split to use for training and evaluation."}
|
||||
default="train", metadata={"help": "Which dataset split to use for training and evaluation."}
|
||||
)
|
||||
cutoff_len: Optional[int] = field(
|
||||
default=1024,
|
||||
metadata={"help": "The maximum length of the model inputs after tokenization."}
|
||||
default=1024, metadata={"help": "The maximum length of the model inputs after tokenization."}
|
||||
)
|
||||
reserved_label_len: Optional[int] = field(
|
||||
default=1,
|
||||
metadata={"help": "The maximum length reserved for label after tokenization."}
|
||||
default=1, metadata={"help": "The maximum length reserved for label after tokenization."}
|
||||
)
|
||||
train_on_prompt: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether to disable the mask on the prompt or not."}
|
||||
)
|
||||
streaming: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Enable dataset streaming."}
|
||||
default=False, metadata={"help": "Whether to disable the mask on the prompt or not."}
|
||||
)
|
||||
streaming: Optional[bool] = field(default=False, metadata={"help": "Enable dataset streaming."})
|
||||
buffer_size: Optional[int] = field(
|
||||
default=16384,
|
||||
metadata={"help": "Size of the buffer to randomly sample examples from in dataset streaming."}
|
||||
default=16384, metadata={"help": "Size of the buffer to randomly sample examples from in dataset streaming."}
|
||||
)
|
||||
mix_strategy: Optional[Literal["concat", "interleave_under", "interleave_over"]] = field(
|
||||
default="concat",
|
||||
metadata={"help": "Strategy to use in dataset mixing (concat/interleave) (undersampling/oversampling)."}
|
||||
metadata={"help": "Strategy to use in dataset mixing (concat/interleave) (undersampling/oversampling)."},
|
||||
)
|
||||
interleave_probs: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Probabilities to sample data from datasets. Use commas to separate multiple datasets."}
|
||||
metadata={"help": "Probabilities to sample data from datasets. Use commas to separate multiple datasets."},
|
||||
)
|
||||
overwrite_cache: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Overwrite the cached training and evaluation sets."}
|
||||
default=False, metadata={"help": "Overwrite the cached training and evaluation sets."}
|
||||
)
|
||||
preprocessing_num_workers: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={"help": "The number of processes to use for the preprocessing."}
|
||||
default=None, metadata={"help": "The number of processes to use for the preprocessing."}
|
||||
)
|
||||
max_samples: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."}
|
||||
default=None, metadata={"help": "For debugging purposes, truncate the number of examples for each dataset."}
|
||||
)
|
||||
eval_num_beams: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`"}
|
||||
metadata={"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`"},
|
||||
)
|
||||
ignore_pad_token_for_loss: Optional[bool] = field(
|
||||
default=True,
|
||||
metadata={"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."}
|
||||
metadata={
|
||||
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
|
||||
},
|
||||
)
|
||||
val_size: Optional[float] = field(
|
||||
default=0,
|
||||
metadata={"help": "Size of the development set, should be an integer or a float in range `[0,1)`."}
|
||||
default=0, metadata={"help": "Size of the development set, should be an integer or a float in range `[0,1)`."}
|
||||
)
|
||||
sft_packing: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Packing the questions and answers in the supervised fine-tuning stage."}
|
||||
default=False, metadata={"help": "Packing the questions and answers in the supervised fine-tuning stage."}
|
||||
)
|
||||
cache_path: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Path to save or load the preprocessed datasets."}
|
||||
default=None, metadata={"help": "Path to save or load the preprocessed datasets."}
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
from typing import Literal, Optional
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Literal, Optional
|
||||
|
||||
from datasets import DownloadMode
|
||||
|
||||
@@ -10,36 +10,18 @@ class EvaluationArguments:
|
||||
r"""
|
||||
Arguments pertaining to specify the evaluation parameters.
|
||||
"""
|
||||
task: str = field(
|
||||
metadata={"help": "Name of the evaluation task."}
|
||||
)
|
||||
task: str = field(metadata={"help": "Name of the evaluation task."})
|
||||
task_dir: Optional[str] = field(
|
||||
default="evaluation",
|
||||
metadata={"help": "Path to the folder containing the evaluation datasets."}
|
||||
)
|
||||
batch_size: Optional[int] = field(
|
||||
default=4,
|
||||
metadata={"help": "The batch size per GPU for evaluation."}
|
||||
)
|
||||
seed: Optional[int] = field(
|
||||
default=42,
|
||||
metadata={"help": "Random seed to be used with data loaders."}
|
||||
)
|
||||
lang: Optional[Literal["en", "zh"]] = field(
|
||||
default="en",
|
||||
metadata={"help": "Language used at evaluation."}
|
||||
)
|
||||
n_shot: Optional[int] = field(
|
||||
default=5,
|
||||
metadata={"help": "Number of examplars for few-shot learning."}
|
||||
)
|
||||
save_dir: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Path to save the evaluation results."}
|
||||
default="evaluation", metadata={"help": "Path to the folder containing the evaluation datasets."}
|
||||
)
|
||||
batch_size: Optional[int] = field(default=4, metadata={"help": "The batch size per GPU for evaluation."})
|
||||
seed: Optional[int] = field(default=42, metadata={"help": "Random seed to be used with data loaders."})
|
||||
lang: Optional[Literal["en", "zh"]] = field(default="en", metadata={"help": "Language used at evaluation."})
|
||||
n_shot: Optional[int] = field(default=5, metadata={"help": "Number of examplars for few-shot learning."})
|
||||
save_dir: Optional[str] = field(default=None, metadata={"help": "Path to save the evaluation results."})
|
||||
download_mode: Optional[DownloadMode] = field(
|
||||
default=DownloadMode.REUSE_DATASET_IF_EXISTS,
|
||||
metadata={"help": "Download mode used for the evaluation datasets."}
|
||||
metadata={"help": "Download mode used for the evaluation datasets."},
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import json
|
||||
from typing import Literal, Optional
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from typing import Literal, Optional
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -10,17 +10,18 @@ class FreezeArguments:
|
||||
"""
|
||||
name_module_trainable: Optional[str] = field(
|
||||
default="mlp",
|
||||
metadata={"help": "Name of trainable modules for partial-parameter (freeze) fine-tuning. \
|
||||
metadata={
|
||||
"help": 'Name of trainable modules for partial-parameter (freeze) fine-tuning. \
|
||||
Use commas to separate multiple modules. \
|
||||
LLaMA choices: [\"mlp\", \"self_attn\"], \
|
||||
BLOOM & Falcon & ChatGLM choices: [\"mlp\", \"self_attention\"], \
|
||||
Qwen choices: [\"mlp\", \"attn\"], \
|
||||
Phi choices: [\"mlp\", \"mixer\"], \
|
||||
Others choices: the same as LLaMA."}
|
||||
LLaMA choices: ["mlp", "self_attn"], \
|
||||
BLOOM & Falcon & ChatGLM choices: ["mlp", "self_attention"], \
|
||||
Qwen choices: ["mlp", "attn"], \
|
||||
Phi choices: ["mlp", "mixer"], \
|
||||
Others choices: the same as LLaMA.'
|
||||
},
|
||||
)
|
||||
num_layer_trainable: Optional[int] = field(
|
||||
default=3,
|
||||
metadata={"help": "The number of trainable layers for partial-parameter (freeze) fine-tuning."}
|
||||
default=3, metadata={"help": "The number of trainable layers for partial-parameter (freeze) fine-tuning."}
|
||||
)
|
||||
|
||||
|
||||
@@ -31,37 +32,32 @@ class LoraArguments:
|
||||
"""
|
||||
additional_target: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Name(s) of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint."}
|
||||
metadata={
|
||||
"help": "Name(s) of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint."
|
||||
},
|
||||
)
|
||||
lora_alpha: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={"help": "The scale factor for LoRA fine-tuning (default: lora_rank * 2)."}
|
||||
)
|
||||
lora_dropout: Optional[float] = field(
|
||||
default=0.0,
|
||||
metadata={"help": "Dropout rate for the LoRA fine-tuning."}
|
||||
)
|
||||
lora_rank: Optional[int] = field(
|
||||
default=8,
|
||||
metadata={"help": "The intrinsic dimension for LoRA fine-tuning."}
|
||||
default=None, metadata={"help": "The scale factor for LoRA fine-tuning (default: lora_rank * 2)."}
|
||||
)
|
||||
lora_dropout: Optional[float] = field(default=0.0, metadata={"help": "Dropout rate for the LoRA fine-tuning."})
|
||||
lora_rank: Optional[int] = field(default=8, metadata={"help": "The intrinsic dimension for LoRA fine-tuning."})
|
||||
lora_target: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Name(s) of target modules to apply LoRA. Use commas to separate multiple modules. \
|
||||
LLaMA choices: [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \
|
||||
BLOOM & Falcon & ChatGLM choices: [\"query_key_value\", \"dense\", \"dense_h_to_4h\", \"dense_4h_to_h\"], \
|
||||
Baichuan choices: [\"W_pack\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \
|
||||
Qwen choices: [\"c_attn\", \"attn.c_proj\", \"w1\", \"w2\", \"mlp.c_proj\"], \
|
||||
Phi choices: [\"Wqkv\", \"out_proj\", \"fc1\", \"fc2\"], \
|
||||
Others choices: the same as LLaMA."}
|
||||
metadata={
|
||||
"help": 'Name(s) of target modules to apply LoRA. Use commas to separate multiple modules. \
|
||||
LLaMA choices: ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], \
|
||||
BLOOM & Falcon & ChatGLM choices: ["query_key_value", "dense", "dense_h_to_4h", "dense_4h_to_h"], \
|
||||
Baichuan choices: ["W_pack", "o_proj", "gate_proj", "up_proj", "down_proj"], \
|
||||
Qwen choices: ["c_attn", "attn.c_proj", "w1", "w2", "mlp.c_proj"], \
|
||||
Phi choices: ["Wqkv", "out_proj", "fc1", "fc2"], \
|
||||
Others choices: the same as LLaMA.'
|
||||
},
|
||||
)
|
||||
lora_bf16_mode: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to train lora adapters in bf16 precision."}
|
||||
default=False, metadata={"help": "Whether or not to train lora adapters in bf16 precision."}
|
||||
)
|
||||
create_new_adapter: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to create a new adapter with randomly initialized weight."}
|
||||
default=False, metadata={"help": "Whether or not to create a new adapter with randomly initialized weight."}
|
||||
)
|
||||
|
||||
|
||||
@@ -70,69 +66,53 @@ class RLHFArguments:
|
||||
r"""
|
||||
Arguments pertaining to the PPO and DPO training.
|
||||
"""
|
||||
dpo_beta: Optional[float] = field(
|
||||
default=0.1,
|
||||
metadata={"help": "The beta parameter for the DPO loss."}
|
||||
)
|
||||
dpo_beta: Optional[float] = field(default=0.1, metadata={"help": "The beta parameter for the DPO loss."})
|
||||
dpo_loss: Optional[Literal["sigmoid", "hinge", "ipo", "kto"]] = field(
|
||||
default="sigmoid",
|
||||
metadata={"help": "The type of DPO loss to use."}
|
||||
default="sigmoid", metadata={"help": "The type of DPO loss to use."}
|
||||
)
|
||||
dpo_ftx: Optional[float] = field(
|
||||
default=0,
|
||||
metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."}
|
||||
default=0, metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."}
|
||||
)
|
||||
ppo_buffer_size: Optional[int] = field(
|
||||
default=1,
|
||||
metadata={"help": "The number of mini-batches to make experience buffer in a PPO optimization step."}
|
||||
metadata={"help": "The number of mini-batches to make experience buffer in a PPO optimization step."},
|
||||
)
|
||||
ppo_epochs: Optional[int] = field(
|
||||
default=4,
|
||||
metadata={"help": "The number of epochs to perform in a PPO optimization step."}
|
||||
default=4, metadata={"help": "The number of epochs to perform in a PPO optimization step."}
|
||||
)
|
||||
ppo_logger: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Log with either \"wandb\" or \"tensorboard\" in PPO training."}
|
||||
default=None, metadata={"help": 'Log with either "wandb" or "tensorboard" in PPO training.'}
|
||||
)
|
||||
ppo_score_norm: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Use score normalization in PPO training."}
|
||||
default=False, metadata={"help": "Use score normalization in PPO training."}
|
||||
)
|
||||
ppo_target: Optional[float] = field(
|
||||
default=6.0,
|
||||
metadata={"help": "Target KL value for adaptive KL control in PPO training."}
|
||||
default=6.0, metadata={"help": "Target KL value for adaptive KL control in PPO training."}
|
||||
)
|
||||
ppo_whiten_rewards: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Whiten the rewards before compute advantages in PPO training."}
|
||||
default=False, metadata={"help": "Whiten the rewards before compute advantages in PPO training."}
|
||||
)
|
||||
ref_model: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Path to the reference model used for the PPO or DPO training."}
|
||||
default=None, metadata={"help": "Path to the reference model used for the PPO or DPO training."}
|
||||
)
|
||||
ref_model_adapters: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Path to the adapters of the reference model."}
|
||||
default=None, metadata={"help": "Path to the adapters of the reference model."}
|
||||
)
|
||||
ref_model_quantization_bit: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={"help": "The number of bits to quantize the reference model."}
|
||||
default=None, metadata={"help": "The number of bits to quantize the reference model."}
|
||||
)
|
||||
reward_model: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Path to the reward model used for the PPO training."}
|
||||
default=None, metadata={"help": "Path to the reward model used for the PPO training."}
|
||||
)
|
||||
reward_model_adapters: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Path to the adapters of the reward model."}
|
||||
default=None, metadata={"help": "Path to the adapters of the reward model."}
|
||||
)
|
||||
reward_model_quantization_bit: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={"help": "The number of bits to quantize the reward model."}
|
||||
default=None, metadata={"help": "The number of bits to quantize the reward model."}
|
||||
)
|
||||
reward_model_type: Optional[Literal["lora", "full", "api"]] = field(
|
||||
default="lora",
|
||||
metadata={"help": "The type of the reward model in PPO training. Lora model only supports lora training."}
|
||||
metadata={"help": "The type of the reward model in PPO training. Lora model only supports lora training."},
|
||||
)
|
||||
|
||||
|
||||
@@ -142,16 +122,13 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments):
|
||||
Arguments pertaining to which techniques we are going to fine-tuning with.
|
||||
"""
|
||||
stage: Optional[Literal["pt", "sft", "rm", "ppo", "dpo"]] = field(
|
||||
default="sft",
|
||||
metadata={"help": "Which stage will be performed in training."}
|
||||
default="sft", metadata={"help": "Which stage will be performed in training."}
|
||||
)
|
||||
finetuning_type: Optional[Literal["lora", "freeze", "full"]] = field(
|
||||
default="lora",
|
||||
metadata={"help": "Which fine-tuning method to use."}
|
||||
default="lora", metadata={"help": "Which fine-tuning method to use."}
|
||||
)
|
||||
plot_loss: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to save the training loss curves."}
|
||||
default=False, metadata={"help": "Whether or not to save the training loss curves."}
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from typing import Any, Dict, Optional
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -8,40 +8,37 @@ class GeneratingArguments:
|
||||
Arguments pertaining to specify the decoding parameters.
|
||||
"""
|
||||
do_sample: Optional[bool] = field(
|
||||
default=True,
|
||||
metadata={"help": "Whether or not to use sampling, use greedy decoding otherwise."}
|
||||
default=True, metadata={"help": "Whether or not to use sampling, use greedy decoding otherwise."}
|
||||
)
|
||||
temperature: Optional[float] = field(
|
||||
default=0.95,
|
||||
metadata={"help": "The value used to modulate the next token probabilities."}
|
||||
default=0.95, metadata={"help": "The value used to modulate the next token probabilities."}
|
||||
)
|
||||
top_p: Optional[float] = field(
|
||||
default=0.7,
|
||||
metadata={"help": "The smallest set of most probable tokens with probabilities that add up to top_p or higher are kept."}
|
||||
metadata={
|
||||
"help": "The smallest set of most probable tokens with probabilities that add up to top_p or higher are kept."
|
||||
},
|
||||
)
|
||||
top_k: Optional[int] = field(
|
||||
default=50,
|
||||
metadata={"help": "The number of highest probability vocabulary tokens to keep for top-k filtering."}
|
||||
metadata={"help": "The number of highest probability vocabulary tokens to keep for top-k filtering."},
|
||||
)
|
||||
num_beams: Optional[int] = field(
|
||||
default=1,
|
||||
metadata={"help": "Number of beams for beam search. 1 means no beam search."}
|
||||
default=1, metadata={"help": "Number of beams for beam search. 1 means no beam search."}
|
||||
)
|
||||
max_length: Optional[int] = field(
|
||||
default=512,
|
||||
metadata={"help": "The maximum length the generated tokens can have. It can be overridden by max_new_tokens."}
|
||||
metadata={"help": "The maximum length the generated tokens can have. It can be overridden by max_new_tokens."},
|
||||
)
|
||||
max_new_tokens: Optional[int] = field(
|
||||
default=512,
|
||||
metadata={"help": "The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt."}
|
||||
metadata={"help": "The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt."},
|
||||
)
|
||||
repetition_penalty: Optional[float] = field(
|
||||
default=1.0,
|
||||
metadata={"help": "The parameter for repetition penalty. 1.0 means no penalty."}
|
||||
default=1.0, metadata={"help": "The parameter for repetition penalty. 1.0 means no penalty."}
|
||||
)
|
||||
length_penalty: Optional[float] = field(
|
||||
default=1.0,
|
||||
metadata={"help": "Exponential penalty to the length that is used with beam-based generation."}
|
||||
default=1.0, metadata={"help": "Exponential penalty to the length that is used with beam-based generation."}
|
||||
)
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from typing import Any, Dict, Literal, Optional
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from typing import Any, Dict, Literal, Optional
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -11,108 +11,82 @@ class ModelArguments:
|
||||
metadata={"help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models."}
|
||||
)
|
||||
adapter_name_or_path: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Path to the adapter weight or identifier from huggingface.co/models."}
|
||||
default=None, metadata={"help": "Path to the adapter weight or identifier from huggingface.co/models."}
|
||||
)
|
||||
cache_dir: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."}
|
||||
metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."},
|
||||
)
|
||||
use_fast_tokenizer: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."}
|
||||
metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."},
|
||||
)
|
||||
resize_vocab: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."}
|
||||
default=False, metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."}
|
||||
)
|
||||
split_special_tokens: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not the special tokens should be split during the tokenization process."}
|
||||
metadata={"help": "Whether or not the special tokens should be split during the tokenization process."},
|
||||
)
|
||||
model_revision: Optional[str] = field(
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
quantization_bit: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={"help": "The number of bits to quantize the model."}
|
||||
default=None, metadata={"help": "The number of bits to quantize the model."}
|
||||
)
|
||||
quantization_type: Optional[Literal["fp4", "nf4"]] = field(
|
||||
default="nf4",
|
||||
metadata={"help": "Quantization data type to use in int4 training."}
|
||||
default="nf4", metadata={"help": "Quantization data type to use in int4 training."}
|
||||
)
|
||||
double_quantization: Optional[bool] = field(
|
||||
default=True,
|
||||
metadata={"help": "Whether or not to use double quantization in int4 training."}
|
||||
default=True, metadata={"help": "Whether or not to use double quantization in int4 training."}
|
||||
)
|
||||
rope_scaling: Optional[Literal["linear", "dynamic"]] = field(
|
||||
default=None,
|
||||
metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."}
|
||||
default=None, metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."}
|
||||
)
|
||||
flash_attn: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Enable FlashAttention-2 for faster training."}
|
||||
default=False, metadata={"help": "Enable FlashAttention-2 for faster training."}
|
||||
)
|
||||
shift_attn: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."}
|
||||
default=False, metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."}
|
||||
)
|
||||
use_unsloth: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."}
|
||||
default=False, metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."}
|
||||
)
|
||||
disable_gradient_checkpointing: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to disable gradient checkpointing."}
|
||||
default=False, metadata={"help": "Whether or not to disable gradient checkpointing."}
|
||||
)
|
||||
upcast_layernorm: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to upcast the layernorm weights in fp32."}
|
||||
default=False, metadata={"help": "Whether or not to upcast the layernorm weights in fp32."}
|
||||
)
|
||||
upcast_lmhead_output: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to upcast the output of lm_head in fp32."}
|
||||
)
|
||||
hf_hub_token: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Auth token to log in with Hugging Face Hub."}
|
||||
)
|
||||
ms_hub_token: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Auth token to log in with ModelScope Hub."}
|
||||
default=False, metadata={"help": "Whether or not to upcast the output of lm_head in fp32."}
|
||||
)
|
||||
hf_hub_token: Optional[str] = field(default=None, metadata={"help": "Auth token to log in with Hugging Face Hub."})
|
||||
ms_hub_token: Optional[str] = field(default=None, metadata={"help": "Auth token to log in with ModelScope Hub."})
|
||||
export_dir: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Path to the directory to save the exported model."}
|
||||
default=None, metadata={"help": "Path to the directory to save the exported model."}
|
||||
)
|
||||
export_size: Optional[int] = field(
|
||||
default=1,
|
||||
metadata={"help": "The file shard size (in GB) of the exported model."}
|
||||
default=1, metadata={"help": "The file shard size (in GB) of the exported model."}
|
||||
)
|
||||
export_quantization_bit: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={"help": "The number of bits to quantize the exported model."}
|
||||
default=None, metadata={"help": "The number of bits to quantize the exported model."}
|
||||
)
|
||||
export_quantization_dataset: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."}
|
||||
default=None, metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."}
|
||||
)
|
||||
export_quantization_nsamples: Optional[int] = field(
|
||||
default=128,
|
||||
metadata={"help": "The number of samples used for quantization."}
|
||||
default=128, metadata={"help": "The number of samples used for quantization."}
|
||||
)
|
||||
export_quantization_maxlen: Optional[int] = field(
|
||||
default=1024,
|
||||
metadata={"help": "The maximum length of the model inputs used for quantization."}
|
||||
default=1024, metadata={"help": "The maximum length of the model inputs used for quantization."}
|
||||
)
|
||||
export_legacy_format: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."}
|
||||
default=False, metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."}
|
||||
)
|
||||
export_hub_model_id: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "The name of the repository if push the model to the Hugging Face hub."}
|
||||
default=None, metadata={"help": "The name of the repository if push the model to the Hugging Face hub."}
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
@@ -122,7 +96,7 @@ class ModelArguments:
|
||||
if self.split_special_tokens and self.use_fast_tokenizer:
|
||||
raise ValueError("`split_special_tokens` is only supported for slow tokenizers.")
|
||||
|
||||
if self.adapter_name_or_path is not None: # support merging multiple lora weights
|
||||
if self.adapter_name_or_path is not None: # support merging multiple lora weights
|
||||
self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")]
|
||||
|
||||
assert self.quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
|
||||
|
||||
@@ -1,10 +1,11 @@
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import torch
|
||||
import logging
|
||||
import datasets
|
||||
import transformers
|
||||
from typing import Any, Dict, Optional, Tuple
|
||||
|
||||
import datasets
|
||||
import torch
|
||||
import transformers
|
||||
from transformers import HfArgumentParser, Seq2SeqTrainingArguments
|
||||
from transformers.trainer_utils import get_last_checkpoint
|
||||
|
||||
@@ -19,24 +20,12 @@ from .model_args import ModelArguments
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
_TRAIN_ARGS = [
|
||||
ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments
|
||||
]
|
||||
_TRAIN_CLS = Tuple[
|
||||
ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments
|
||||
]
|
||||
_INFER_ARGS = [
|
||||
ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments
|
||||
]
|
||||
_INFER_CLS = Tuple[
|
||||
ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments
|
||||
]
|
||||
_EVAL_ARGS = [
|
||||
ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments
|
||||
]
|
||||
_EVAL_CLS = Tuple[
|
||||
ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments
|
||||
]
|
||||
_TRAIN_ARGS = [ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments]
|
||||
_TRAIN_CLS = Tuple[ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments]
|
||||
_INFER_ARGS = [ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
|
||||
_INFER_CLS = Tuple[ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments]
|
||||
_EVAL_ARGS = [ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
|
||||
_EVAL_CLS = Tuple[ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments]
|
||||
|
||||
|
||||
def _parse_args(parser: "HfArgumentParser", args: Optional[Dict[str, Any]] = None) -> Tuple[Any]:
|
||||
@@ -77,7 +66,7 @@ def _verify_model_args(model_args: "ModelArguments", finetuning_args: "Finetunin
|
||||
if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1:
|
||||
if finetuning_args.finetuning_type != "lora":
|
||||
raise ValueError("Multiple adapters are only available for LoRA tuning.")
|
||||
|
||||
|
||||
if model_args.quantization_bit is not None:
|
||||
raise ValueError("Quantized model only accepts a single adapter. Merge them first.")
|
||||
|
||||
@@ -181,18 +170,22 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
||||
training_args_dict = training_args.to_dict()
|
||||
training_args_dict.update(dict(resume_from_checkpoint=last_checkpoint))
|
||||
training_args = Seq2SeqTrainingArguments(**training_args_dict)
|
||||
logger.info("Resuming training from {}. Change `output_dir` or use `overwrite_output_dir` to avoid.".format(
|
||||
training_args.resume_from_checkpoint
|
||||
))
|
||||
logger.info(
|
||||
"Resuming training from {}. Change `output_dir` or use `overwrite_output_dir` to avoid.".format(
|
||||
training_args.resume_from_checkpoint
|
||||
)
|
||||
)
|
||||
|
||||
if (
|
||||
finetuning_args.stage in ["rm", "ppo"]
|
||||
and finetuning_args.finetuning_type == "lora"
|
||||
and training_args.resume_from_checkpoint is not None
|
||||
):
|
||||
logger.warning("Add {} to `adapter_name_or_path` to resume training from checkpoint.".format(
|
||||
training_args.resume_from_checkpoint
|
||||
))
|
||||
logger.warning(
|
||||
"Add {} to `adapter_name_or_path` to resume training from checkpoint.".format(
|
||||
training_args.resume_from_checkpoint
|
||||
)
|
||||
)
|
||||
|
||||
# postprocess model_args
|
||||
model_args.compute_dtype = (
|
||||
@@ -201,10 +194,15 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
||||
model_args.model_max_length = data_args.cutoff_len
|
||||
|
||||
# Log on each process the small summary:
|
||||
logger.info("Process rank: {}, device: {}, n_gpu: {}\n distributed training: {}, compute dtype: {}".format(
|
||||
training_args.local_rank, training_args.device, training_args.n_gpu,
|
||||
bool(training_args.local_rank != -1), str(model_args.compute_dtype)
|
||||
))
|
||||
logger.info(
|
||||
"Process rank: {}, device: {}, n_gpu: {}\n distributed training: {}, compute dtype: {}".format(
|
||||
training_args.local_rank,
|
||||
training_args.device,
|
||||
training_args.n_gpu,
|
||||
bool(training_args.local_rank != -1),
|
||||
str(model_args.compute_dtype),
|
||||
)
|
||||
)
|
||||
logger.info(f"Training/evaluation parameters {training_args}")
|
||||
|
||||
# Set seed before initializing model.
|
||||
|
||||
Reference in New Issue
Block a user