format style

Former-commit-id: 53b683531b83cd1d19de97c6565f16c1eca6f5e1
This commit is contained in:
hiyouga
2024-01-20 20:15:56 +08:00
parent 1750218057
commit 66e0e651b9
73 changed files with 1492 additions and 2325 deletions

View File

@@ -1,6 +1,6 @@
from .loader import get_dataset
from .template import get_template_and_fix_tokenizer, templates
from .utils import split_dataset, Role
from .utils import Role, split_dataset
__all__ = ["get_dataset", "get_template_and_fix_tokenizer", "templates", "split_dataset", "Role"]

View File

@@ -27,7 +27,9 @@ def convert_alpaca(examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr")
if dataset_attr.response:
if isinstance(examples[dataset_attr.response][i], list):
response = [{"role": Role.ASSISTANT, "content": content} for content in examples[dataset_attr.response][i]]
response = [
{"role": Role.ASSISTANT, "content": content} for content in examples[dataset_attr.response][i]
]
else:
response = [{"role": Role.ASSISTANT, "content": examples[dataset_attr.response][i]}]
else:
@@ -47,10 +49,10 @@ def convert_sharegpt(examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr"
dataset_attr.user_tag: Role.USER,
dataset_attr.assistant_tag: Role.ASSISTANT,
dataset_attr.observation_tag: Role.OBSERVATION,
dataset_attr.function_tag: Role.FUNCTION
dataset_attr.function_tag: Role.FUNCTION,
}
for i, messages in enumerate(examples[dataset_attr.messages]):
messages = messages[:len(messages) // 2 * 2] # should be multiples of 2
messages = messages[: len(messages) // 2 * 2] # should be multiples of 2
if len(messages) == 0:
continue
@@ -65,7 +67,9 @@ def convert_sharegpt(examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr"
if message[dataset_attr.role_tag] not in accept_tags:
raise ValueError("Invalid role tag in {}.".format(messages))
prompt.append({"role": tag_mapping[message[dataset_attr.role_tag]], "content": message[dataset_attr.content_tag]})
prompt.append(
{"role": tag_mapping[message[dataset_attr.role_tag]], "content": message[dataset_attr.content_tag]}
)
last_message = prompt.pop(-1)
response.append(last_message)
@@ -98,12 +102,7 @@ def align_dataset(
kwargs = dict(
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=(not data_args.overwrite_cache),
desc="Converting format of dataset"
desc="Converting format of dataset",
)
return dataset.map(
convert_func,
batched=True,
remove_columns=column_names,
**kwargs
)
return dataset.map(convert_func, batched=True, remove_columns=column_names, **kwargs)

View File

@@ -76,7 +76,11 @@ class ToolFormatter:
required = ", required" if name in tool["parameters"].get("required", []) else ""
enum = ", should be one of [{}]".format(", ".join(param["enum"])) if param.get("enum", None) else ""
param_text += " - {name} ({type}{required}): {desc}{enum}\n".format(
name=name, type=param.get("type", ""), required=required, desc=param.get("description", ""), enum=enum
name=name,
type=param.get("type", ""),
required=required,
desc=param.get("description", ""),
enum=enum,
)
tool_text += "> Tool Name: {name}\nTool Description: {desc}\nTool Args:\n{args}\n".format(
@@ -85,9 +89,7 @@ class ToolFormatter:
tool_names.append(tool["name"])
return TOOL_SYSTEM_PROMPT.format(
tool_text=tool_text,
tool_names=", ".join(tool_names),
format_prompt=JSON_FORMAT_PROMPT
tool_text=tool_text, tool_names=", ".join(tool_names), format_prompt=JSON_FORMAT_PROMPT
)
def __call__(self, content: str) -> List[Union[str, Dict[str, str]]]:

View File

@@ -1,16 +1,16 @@
import os
import inspect
import os
from typing import TYPE_CHECKING, List, Literal, Union
from datasets import concatenate_datasets, interleave_datasets, load_dataset, load_from_disk
from ..extras.constants import FILEEXT2TYPE
from ..extras.logging import get_logger
from .utils import checksum
from .parser import get_dataset_list
from .aligner import align_dataset
from .template import get_template_and_fix_tokenizer
from .parser import get_dataset_list
from .preprocess import get_preprocess_and_print_func
from .template import get_template_and_fix_tokenizer
from .utils import checksum
if TYPE_CHECKING:
@@ -18,8 +18,8 @@ if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments
from transformers.tokenization_utils import PreTrainedTokenizer
from ..hparams import DataArguments, ModelArguments
from .parser import DatasetAttr
from ..hparams import ModelArguments, DataArguments
logger = get_logger(__name__)
@@ -44,14 +44,14 @@ def load_single_dataset(
elif dataset_attr.load_from == "file":
data_files = []
local_path: str = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
if os.path.isdir(local_path): # is directory
if os.path.isdir(local_path): # is directory
for file_name in os.listdir(local_path):
data_files.append(os.path.join(local_path, file_name))
if data_path is None:
data_path = FILEEXT2TYPE.get(file_name.split(".")[-1], None)
elif data_path != FILEEXT2TYPE.get(file_name.split(".")[-1], None):
raise ValueError("File types should be identical.")
elif os.path.isfile(local_path): # is file
elif os.path.isfile(local_path): # is file
data_files.append(local_path)
data_path = FILEEXT2TYPE.get(local_path.split(".")[-1], None)
else:
@@ -78,12 +78,12 @@ def load_single_dataset(
split=data_args.split,
cache_dir=cache_dir,
token=model_args.ms_hub_token,
use_streaming=(data_args.streaming and (dataset_attr.load_from != "file"))
use_streaming=(data_args.streaming and (dataset_attr.load_from != "file")),
).to_hf_dataset()
except ImportError:
raise ImportError("Please install modelscope via `pip install modelscope -U`")
else:
if "trust_remote_code" in inspect.signature(load_dataset).parameters: # for datasets==2.16.0
if "trust_remote_code" in inspect.signature(load_dataset).parameters: # for datasets==2.16.0
kwargs = {"trust_remote_code": True}
else:
kwargs = {}
@@ -97,13 +97,13 @@ def load_single_dataset(
cache_dir=model_args.cache_dir,
token=model_args.hf_hub_token,
streaming=(data_args.streaming and (dataset_attr.load_from != "file")),
**kwargs
**kwargs,
)
if data_args.streaming and (dataset_attr.load_from == "file"): # faster than specifying streaming=True
dataset = dataset.to_iterable_dataset() # TODO: add num shards parameter
if data_args.streaming and (dataset_attr.load_from == "file"): # faster than specifying streaming=True
dataset = dataset.to_iterable_dataset() # TODO: add num shards parameter
if data_args.max_samples is not None: # truncate dataset
if data_args.max_samples is not None: # truncate dataset
num_samples = min(data_args.max_samples, len(dataset))
dataset = dataset.select(range(num_samples))
@@ -113,7 +113,7 @@ def load_single_dataset(
def merge_dataset(
all_datasets: List[Union["Dataset", "IterableDataset"]],
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments"
training_args: "Seq2SeqTrainingArguments",
) -> Union["Dataset", "IterableDataset"]:
if len(all_datasets) == 1:
return all_datasets[0]
@@ -128,7 +128,7 @@ def merge_dataset(
datasets=all_datasets,
probabilities=data_args.interleave_probs,
seed=training_args.seed,
stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted"
stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted",
)
else:
raise ValueError("Unknown mixing strategy.")
@@ -160,7 +160,7 @@ def get_dataset(
with training_args.main_process_first(desc="load dataset"):
all_datasets = []
for dataset_attr in get_dataset_list(data_args): # TODO: add split
for dataset_attr in get_dataset_list(data_args): # TODO: add split
all_datasets.append(load_single_dataset(dataset_attr, model_args, data_args))
dataset = merge_dataset(all_datasets, data_args, training_args)
@@ -174,15 +174,10 @@ def get_dataset(
kwargs = dict(
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=(not data_args.overwrite_cache),
desc="Running tokenizer on dataset"
desc="Running tokenizer on dataset",
)
dataset = dataset.map(
preprocess_func,
batched=True,
remove_columns=column_names,
**kwargs
)
dataset = dataset.map(preprocess_func, batched=True, remove_columns=column_names, **kwargs)
if data_args.cache_path is not None and not os.path.exists(data_args.cache_path):
if training_args.should_save:

View File

@@ -1,18 +1,18 @@
import os
import json
from typing import TYPE_CHECKING, List, Literal, Optional
import os
from dataclasses import dataclass
from typing import TYPE_CHECKING, List, Literal, Optional
from ..extras.constants import DATA_CONFIG
from ..extras.misc import use_modelscope
if TYPE_CHECKING:
from ..hparams import DataArguments
@dataclass
class DatasetAttr:
load_from: Literal["hf_hub", "ms_hub", "script", "file"]
dataset_name: Optional[str] = None
dataset_sha1: Optional[str] = None
@@ -49,7 +49,9 @@ def get_dataset_list(data_args: "DataArguments") -> List["DatasetAttr"]:
dataset_info = json.load(f)
except Exception as err:
if data_args.dataset is not None:
raise ValueError("Cannot open {} due to {}.".format(os.path.join(data_args.dataset_dir, DATA_CONFIG), str(err)))
raise ValueError(
"Cannot open {} due to {}.".format(os.path.join(data_args.dataset_dir, DATA_CONFIG), str(err))
)
dataset_info = None
if data_args.interleave_probs is not None:
@@ -74,7 +76,7 @@ def get_dataset_list(data_args: "DataArguments") -> List["DatasetAttr"]:
dataset_attr = DatasetAttr(
"file",
dataset_name=dataset_info[name]["file_name"],
dataset_sha1=dataset_info[name].get("file_sha1", None)
dataset_sha1=dataset_info[name].get("file_sha1", None),
)
dataset_attr.subset = dataset_info[name].get("subset", None)

View File

@@ -5,6 +5,7 @@ from typing import TYPE_CHECKING, Any, Callable, Dict, List, Literal, Tuple
from ..extras.constants import IGNORE_INDEX
from ..extras.logging import get_logger
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments
from transformers.tokenization_utils import PreTrainedTokenizer
@@ -17,9 +18,7 @@ logger = get_logger(__name__)
def preprocess_pretrain_dataset(
examples: Dict[str, List[Any]],
tokenizer: "PreTrainedTokenizer",
data_args: "DataArguments"
examples: Dict[str, List[Any]], tokenizer: "PreTrainedTokenizer", data_args: "DataArguments"
) -> Dict[str, List[List[int]]]:
# build grouped texts with format `X1 X2 X3 ...`
text_examples = [examples["prompt"][i][0]["content"] for i in range(len(examples["prompt"]))]
@@ -35,7 +34,7 @@ def preprocess_pretrain_dataset(
total_length = (total_length // block_size) * block_size
# split by chunks of cutoff_len
result = {
k: [t[i: i + block_size] for i in range(0, total_length, block_size)]
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
return result
@@ -57,9 +56,11 @@ def preprocess_supervised_dataset(
messages = examples["prompt"][i] + examples["response"][i]
input_ids, labels = [], []
for turn_idx, (source_ids, target_ids) in enumerate(template.encode_multiturn(
tokenizer, messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len
)):
for turn_idx, (source_ids, target_ids) in enumerate(
template.encode_multiturn(
tokenizer, messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len
)
):
if data_args.train_on_prompt:
source_mask = source_ids
elif turn_idx != 0 and template.efficient_eos:
@@ -96,9 +97,9 @@ def preprocess_packed_supervised_dataset(
continue
messages = examples["prompt"][i] + examples["response"][i]
for turn_idx, (source_ids, target_ids) in enumerate(template.encode_multiturn(
tokenizer, messages, examples["system"][i], examples["tools"][i]
)):
for turn_idx, (source_ids, target_ids) in enumerate(
template.encode_multiturn(tokenizer, messages, examples["system"][i], examples["tools"][i])
):
if data_args.train_on_prompt:
source_mask = source_ids
elif turn_idx != 0 and template.efficient_eos:
@@ -119,9 +120,9 @@ def preprocess_packed_supervised_dataset(
total_length = (total_length // block_size) * block_size
# split by chunks of cutoff_len
for i in range(0, total_length, block_size):
model_inputs["input_ids"].append(input_ids[i: i + block_size])
model_inputs["input_ids"].append(input_ids[i : i + block_size])
model_inputs["attention_mask"].append([1] * block_size)
model_inputs["labels"].append(labels[i: i + block_size])
model_inputs["labels"].append(labels[i : i + block_size])
return model_inputs
@@ -191,9 +192,11 @@ def print_supervised_dataset_example(example: Dict[str, List[int]], tokenizer: "
print("input_ids:\n{}".format(example["input_ids"]))
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
print("label_ids:\n{}".format(example["labels"]))
print("labels:\n{}".format(
tokenizer.decode(list(filter(lambda x: x != IGNORE_INDEX, example["labels"])), skip_special_tokens=False)
))
print(
"labels:\n{}".format(
tokenizer.decode(list(filter(lambda x: x != IGNORE_INDEX, example["labels"])), skip_special_tokens=False)
)
)
def print_pairwise_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
@@ -232,10 +235,14 @@ def get_preprocess_and_print_func(
print_function = partial(print_supervised_dataset_example, tokenizer=tokenizer)
elif stage == "rm":
preprocess_func = partial(preprocess_pairwise_dataset, tokenizer=tokenizer, template=template, data_args=data_args)
preprocess_func = partial(
preprocess_pairwise_dataset, tokenizer=tokenizer, template=template, data_args=data_args
)
print_function = partial(print_pairwise_dataset_example, tokenizer=tokenizer)
else:
preprocess_func = partial(preprocess_unsupervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args)
preprocess_func = partial(
preprocess_unsupervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args
)
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)
return preprocess_func, print_function

View File

@@ -2,8 +2,8 @@ from dataclasses import dataclass
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Tuple, Union
from ..extras.logging import get_logger
from .formatter import FunctionFormatter, StringFormatter, ToolFormatter
from .utils import Role
from .formatter import StringFormatter, FunctionFormatter, ToolFormatter
if TYPE_CHECKING:
@@ -15,7 +15,6 @@ logger = get_logger(__name__)
@dataclass
class Template:
format_user: Callable
format_assistant: Callable
format_system: Callable
@@ -34,7 +33,7 @@ class Template:
messages: List[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
cutoff_len: Optional[int] = 1_000_000
cutoff_len: Optional[int] = 1_000_000,
) -> Tuple[List[int], List[int]]:
r"""
Returns a single pair of token ids representing prompt and response respectively.
@@ -53,7 +52,7 @@ class Template:
messages: List[Dict[str, str]],
system: str,
tools: str,
cutoff_len: Optional[int] = 1_000_000
cutoff_len: Optional[int] = 1_000_000,
) -> List[Tuple[List[int], List[int]]]:
r"""
Returns multiple pairs of token ids representing prompts and responses respectively.
@@ -67,7 +66,7 @@ class Template:
messages: List[Dict[str, str]],
system: str,
tools: str,
cutoff_len: int
cutoff_len: int,
) -> List[Tuple[List[int], List[int]]]:
r"""
Encodes formatted inputs to pairs of token ids.
@@ -102,19 +101,17 @@ class Template:
if total_length >= cutoff_len:
break
encoded_messages[i] = encoded_messages[i][:cutoff_len-total_length]
encoded_messages[i] = encoded_messages[i][: cutoff_len - total_length]
total_length += len(encoded_messages[i])
encoded_messages[i+1] = encoded_messages[i+1][:max(1, cutoff_len-total_length)]
total_length += len(encoded_messages[i+1])
encoded_pairs.append((encoded_messages[i], encoded_messages[i+1]))
encoded_messages[i + 1] = encoded_messages[i + 1][: max(1, cutoff_len - total_length)]
total_length += len(encoded_messages[i + 1])
encoded_pairs.append((encoded_messages[i], encoded_messages[i + 1]))
return encoded_pairs
def _convert_elements_to_ids(
self,
tokenizer: "PreTrainedTokenizer",
elements: List[Union[str, Dict[str, str]]]
self, tokenizer: "PreTrainedTokenizer", elements: List[Union[str, Dict[str, str]]]
) -> List[int]:
r"""
Converts elements to token ids.
@@ -139,14 +136,13 @@ class Template:
@dataclass
class Llama2Template(Template):
def _encode(
self,
tokenizer: "PreTrainedTokenizer",
messages: List[Dict[str, str]],
system: str,
tools: str,
cutoff_len: int
cutoff_len: int,
) -> List[Tuple[List[int], List[int]]]:
r"""
Encodes formatted inputs to pairs of token ids.
@@ -182,12 +178,12 @@ class Llama2Template(Template):
if total_length >= cutoff_len:
break
encoded_messages[i] = encoded_messages[i][:cutoff_len-total_length]
encoded_messages[i] = encoded_messages[i][: cutoff_len - total_length]
total_length += len(encoded_messages[i])
encoded_messages[i+1] = encoded_messages[i+1][:max(1, cutoff_len-total_length)]
total_length += len(encoded_messages[i+1])
encoded_pairs.append((encoded_messages[i], encoded_messages[i+1]))
encoded_messages[i + 1] = encoded_messages[i + 1][: max(1, cutoff_len - total_length)]
total_length += len(encoded_messages[i + 1])
encoded_pairs.append((encoded_messages[i], encoded_messages[i + 1]))
return encoded_pairs
@@ -207,32 +203,26 @@ def register_template(
separator: Optional[List[Union[str, Dict[str, str]]]] = "",
stop_words: Optional[List[str]] = [],
efficient_eos: Optional[bool] = False,
replace_eos: Optional[bool] = False
replace_eos: Optional[bool] = False,
) -> None:
template_class = Llama2Template if name.startswith("llama2") else Template
templates[name] = template_class(
format_user=format_user or StringFormatter(container=["{{content}}"]),
format_assistant=format_assistant or StringFormatter(container=[
"{{content}}", {"eos_token"}
]),
format_assistant=format_assistant or StringFormatter(container=["{{content}}", {"eos_token"}]),
format_system=format_system or StringFormatter(container=["{{content}}"]),
format_tool=format_tool or ToolFormatter(type="default"),
format_observation=format_observation or format_user,
format_function=format_function or FunctionFormatter(container=[
"Action: {{name}}\nAction Input: {{arguments}}", {"eos_token"}
]),
format_function=format_function
or FunctionFormatter(container=["Action: {{name}}\nAction Input: {{arguments}}", {"eos_token"}]),
system=system,
separator=separator,
stop_words=stop_words,
efficient_eos=efficient_eos,
replace_eos=replace_eos
replace_eos=replace_eos,
)
def get_template_and_fix_tokenizer(
name: str,
tokenizer: "PreTrainedTokenizer"
) -> Template:
def get_template_and_fix_tokenizer(name: str, tokenizer: "PreTrainedTokenizer") -> Template:
if tokenizer.eos_token_id is None:
tokenizer.eos_token = "<|endoftext|>"
logger.info("Add eos token: {}".format(tokenizer.eos_token))
@@ -241,7 +231,7 @@ def get_template_and_fix_tokenizer(
tokenizer.pad_token = tokenizer.eos_token
logger.info("Add pad token: {}".format(tokenizer.pad_token))
if name is None: # for pre-training
if name is None: # for pre-training
return None
template = templates.get(name, None)
@@ -258,8 +248,7 @@ def get_template_and_fix_tokenizer(
if stop_words:
tokenizer.add_special_tokens(
dict(additional_special_tokens=stop_words),
replace_additional_special_tokens=False
dict(additional_special_tokens=stop_words), replace_additional_special_tokens=False
)
logger.info("Add {} to stop words.".format(",".join(stop_words)))
@@ -268,263 +257,153 @@ def get_template_and_fix_tokenizer(
register_template(
name="alpaca",
format_user=StringFormatter(container=[
"### Instruction:\n{{content}}\n\n### Response:\n"
]),
format_user=StringFormatter(container=["### Instruction:\n{{content}}\n\n### Response:\n"]),
system=(
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request."
"Below is an instruction that describes a task. " "Write a response that appropriately completes the request."
),
separator=[
"\n\n"
]
separator=["\n\n"],
)
register_template(
name="aquila",
format_user=StringFormatter(container=[
"Human: {{content}}###Assistant:"
]),
format_assistant=StringFormatter(container=[
"{{content}}"
]),
format_user=StringFormatter(container=["Human: {{content}}###Assistant:"]),
format_assistant=StringFormatter(container=["{{content}}"]),
system=(
"A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions."
),
separator=[
"###"
],
stop_words=[
"</s>"
],
efficient_eos=True
separator=["###"],
stop_words=["</s>"],
efficient_eos=True,
)
register_template(
name="baichuan",
format_user=StringFormatter(container=[
{"token": "<reserved_102>"},
"{{content}}",
{"token": "<reserved_103>"}
]),
format_assistant=StringFormatter(container=[
"{{content}}"
]),
efficient_eos=True
format_user=StringFormatter(container=[{"token": "<reserved_102>"}, "{{content}}", {"token": "<reserved_103>"}]),
format_assistant=StringFormatter(container=["{{content}}"]),
efficient_eos=True,
)
register_template(
name="baichuan2",
format_user=StringFormatter(container=[
{"token": "<reserved_106>"},
"{{content}}",
{"token": "<reserved_107>"}
]),
format_assistant=StringFormatter(container=[
"{{content}}"
]),
efficient_eos=True
format_user=StringFormatter(container=[{"token": "<reserved_106>"}, "{{content}}", {"token": "<reserved_107>"}]),
format_assistant=StringFormatter(container=["{{content}}"]),
efficient_eos=True,
)
register_template(
name="belle",
format_user=StringFormatter(container=[
"Human: {{content}}\n\nBelle: "
]),
separator=[
"\n\n"
]
name="belle", format_user=StringFormatter(container=["Human: {{content}}\n\nBelle: "]), separator=["\n\n"]
)
register_template(
name="bluelm",
format_user=StringFormatter(container=[
{"token": "[|Human|]:"},
"{{content}}",
{"token": "[|AI|]:"}
])
format_user=StringFormatter(container=[{"token": "[|Human|]:"}, "{{content}}", {"token": "[|AI|]:"}]),
)
register_template(
name="chatglm2",
format_user=StringFormatter(container=[
"[Round {{idx}}]\n\n问:{{content}}\n\n答:"
]),
format_assistant=StringFormatter(container=[
"{{content}}"
]),
format_system=StringFormatter(container=[
{"token": "[gMASK]"},
{"token": "sop"},
"{{content}}"
]),
separator=[
"\n\n"
],
efficient_eos=True
format_user=StringFormatter(container=["[Round {{idx}}]\n\n问:{{content}}\n\n答:"]),
format_assistant=StringFormatter(container=["{{content}}"]),
format_system=StringFormatter(container=[{"token": "[gMASK]"}, {"token": "sop"}, "{{content}}"]),
separator=["\n\n"],
efficient_eos=True,
)
register_template(
name="chatglm3",
format_user=StringFormatter(container=[
{"token": "<|user|>"},
"\n",
"{{content}}",
{"token": "<|assistant|>"}
]),
format_assistant=StringFormatter(container=[
"\n"
"{{content}}"
]),
format_system=StringFormatter(container=[
{"token": "[gMASK]"},
{"token": "sop"},
{"token": "<|system|>"},
"\n",
"{{content}}"
]),
format_observation=StringFormatter(container=[
{"token": "<|observation|>"},
"\n",
"{{content}}"
]),
format_function=FunctionFormatter(container=[
"{{name}}\n{{arguments}}"
]),
format_user=StringFormatter(container=[{"token": "<|user|>"}, "\n", "{{content}}", {"token": "<|assistant|>"}]),
format_assistant=StringFormatter(container=["\n" "{{content}}"]),
format_system=StringFormatter(
container=[{"token": "[gMASK]"}, {"token": "sop"}, {"token": "<|system|>"}, "\n", "{{content}}"]
),
format_observation=StringFormatter(container=[{"token": "<|observation|>"}, "\n", "{{content}}"]),
format_function=FunctionFormatter(container=["{{name}}\n{{arguments}}"]),
system=(
"You are ChatGLM3, a large language model trained by Zhipu.AI. "
"Follow the user's instructions carefully. Respond using markdown."
),
stop_words=[
"<|user|>",
"<|observation|>"
],
efficient_eos=True
stop_words=["<|user|>", "<|observation|>"],
efficient_eos=True,
)
register_template(
name="codegeex2",
format_system=StringFormatter(container=[
{"token": "[gMASK]"},
{"token": "sop"},
"{{content}}"
])
name="codegeex2", format_system=StringFormatter(container=[{"token": "[gMASK]"}, {"token": "sop"}, "{{content}}"])
)
register_template(
name="deepseek",
format_user=StringFormatter(container=[
"User: {{content}}\n\nAssistant:"
])
)
register_template(name="deepseek", format_user=StringFormatter(container=["User: {{content}}\n\nAssistant:"]))
register_template(
name="deepseekcoder",
format_user=StringFormatter(container=[
"### Instruction:\n{{content}}\n### Response:\n"
]),
format_assistant=StringFormatter(container=[
"{{content}}"
]),
format_user=StringFormatter(container=["### Instruction:\n{{content}}\n### Response:\n"]),
format_assistant=StringFormatter(container=["{{content}}"]),
system=(
"You are an AI programming assistant, utilizing the Deepseek Coder model, "
"developed by Deepseek Company, and you only answer questions related to computer science. "
"For politically sensitive questions, security and privacy issues, "
"and other non-computer science questions, you will refuse to answer\n"
),
separator=[
"\n",
{"token": "<|EOT|>"},
"\n"
],
stop_words=[
"<|EOT|>"
],
efficient_eos=True
separator=["\n", {"token": "<|EOT|>"}, "\n"],
stop_words=["<|EOT|>"],
efficient_eos=True,
)
register_template(
name="default",
format_user=StringFormatter(container=[
"Human: {{content}}\nAssistant: "
]),
format_user=StringFormatter(container=["Human: {{content}}\nAssistant: "]),
system=(
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions.\n"
),
separator=[
"\n"
]
separator=["\n"],
)
register_template(
name="falcon",
format_user=StringFormatter(container=[
"User: {{content}}\nFalcon:"
]),
format_assistant=StringFormatter(container=[
"{{content}}"
]),
separator=[
"\n"
],
efficient_eos=True
format_user=StringFormatter(container=["User: {{content}}\nFalcon:"]),
format_assistant=StringFormatter(container=["{{content}}"]),
separator=["\n"],
efficient_eos=True,
)
register_template(
name="intern",
format_user=StringFormatter(container=[
"<|User|>:{{content}}",
{"token": "<eoh>"},
"\n<|Bot|>:"
]),
format_assistant=StringFormatter(container=[
"{{content}}"
]),
separator=[
{"token": "<eoa>"},
"\n"
],
stop_words=[
"<eoa>"
],
efficient_eos=True
format_user=StringFormatter(container=["<|User|>:{{content}}", {"token": "<eoh>"}, "\n<|Bot|>:"]),
format_assistant=StringFormatter(container=["{{content}}"]),
separator=[{"token": "<eoa>"}, "\n"],
stop_words=["<eoa>"],
efficient_eos=True,
)
register_template(
name="intern2",
format_user=StringFormatter(container=[
{"token": "[UNUSED_TOKEN_146]"},
"user\n{{content}}",
{"token": "[UNUSED_TOKEN_145]"},
"\n",
{"token": "[UNUSED_TOKEN_146]"},
"assistant\n"
]),
format_assistant=StringFormatter(container=[
"{{content}}"
]),
format_system=StringFormatter(container=[
{"token": "[UNUSED_TOKEN_146]"},
"system\n{{content}}",
{"token": "[UNUSED_TOKEN_145]"},
"\n"
]),
format_user=StringFormatter(
container=[
{"token": "[UNUSED_TOKEN_146]"},
"user\n{{content}}",
{"token": "[UNUSED_TOKEN_145]"},
"\n",
{"token": "[UNUSED_TOKEN_146]"},
"assistant\n",
]
),
format_assistant=StringFormatter(container=["{{content}}"]),
format_system=StringFormatter(
container=[{"token": "[UNUSED_TOKEN_146]"}, "system\n{{content}}", {"token": "[UNUSED_TOKEN_145]"}, "\n"]
),
system=(
"You are an AI assistant whose name is InternLM (书生·浦语).\n"
"- InternLM (书生·浦语) is a conversational language model that is developed "
@@ -532,14 +411,9 @@ register_template(
"- InternLM (书生·浦语) can understand and communicate fluently in the language chosen "
"by the user such as English and 中文."
),
separator=[
{"token": "[UNUSED_TOKEN_145]"},
"\n"
],
stop_words=[
"[UNUSED_TOKEN_145]"
],
efficient_eos=True
separator=[{"token": "[UNUSED_TOKEN_145]"}, "\n"],
stop_words=["[UNUSED_TOKEN_145]"],
efficient_eos=True,
)
@@ -556,7 +430,7 @@ register_template(
"If a question does not make any sense, or is not factually coherent, "
"explain why instead of answering something not correct. "
"If you don't know the answer to a question, please don't share false information."
)
),
)
@@ -564,142 +438,83 @@ register_template(
name="llama2_zh",
format_user=StringFormatter(container=["[INST] {{content}} [/INST]"]),
format_system=StringFormatter(container=["<<SYS>>\n{{content}}\n<</SYS>>\n\n"]),
system="You are a helpful assistant. 你是一个乐于助人的助手。"
system="You are a helpful assistant. 你是一个乐于助人的助手。",
)
register_template(
name="mistral",
format_user=StringFormatter(container=["[INST] {{content}} [/INST]"])
)
register_template(name="mistral", format_user=StringFormatter(container=["[INST] {{content}} [/INST]"]))
register_template(
name="openchat",
format_user=StringFormatter(container=[
"GPT4 Correct User: {{content}}",
{"token": "<|end_of_turn|>"},
"GPT4 Correct Assistant:"
]),
format_assistant=StringFormatter(container=[
"{{content}}"
]),
separator=[
{"token": "<|end_of_turn|>"}
],
stop_words=[
"<|end_of_turn|>"
],
efficient_eos=True
format_user=StringFormatter(
container=["GPT4 Correct User: {{content}}", {"token": "<|end_of_turn|>"}, "GPT4 Correct Assistant:"]
),
format_assistant=StringFormatter(container=["{{content}}"]),
separator=[{"token": "<|end_of_turn|>"}],
stop_words=["<|end_of_turn|>"],
efficient_eos=True,
)
register_template(
name="qwen",
format_user=StringFormatter(container=[
"<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"
]),
format_system=StringFormatter(container=[
"<|im_start|>system\n{{content}}<|im_end|>\n"
]),
format_user=StringFormatter(container=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_system=StringFormatter(container=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
system="You are a helpful assistant.",
separator=[
"\n"
],
stop_words=[
"<|im_end|>"
],
replace_eos=True
separator=["\n"],
stop_words=["<|im_end|>"],
replace_eos=True,
)
register_template(
name="solar",
format_user=StringFormatter(container=[
"### User:\n{{content}}\n\n### Assistant:\n"
])
)
register_template(name="solar", format_user=StringFormatter(container=["### User:\n{{content}}\n\n### Assistant:\n"]))
register_template(
name="starchat",
format_user=StringFormatter(container=[
{"token": "<|user|>"},
"\n{{content}}",
{"token": "<|end|>"},
"\n",
{"token": "<|assistant|>"}
]),
format_assistant=StringFormatter(container=[
"{{content}}"
]),
format_system=StringFormatter(container=[
{"token": "<|system|>"},
"\n{{content}}",
{"token": "<|end|>"},
"\n"
]),
separator=[
{"token": "<|end|>"},
"\n"
],
stop_words=[
"<|end|>"
],
efficient_eos=True
format_user=StringFormatter(
container=[{"token": "<|user|>"}, "\n{{content}}", {"token": "<|end|>"}, "\n", {"token": "<|assistant|>"}]
),
format_assistant=StringFormatter(container=["{{content}}"]),
format_system=StringFormatter(container=[{"token": "<|system|>"}, "\n{{content}}", {"token": "<|end|>"}, "\n"]),
separator=[{"token": "<|end|>"}, "\n"],
stop_words=["<|end|>"],
efficient_eos=True,
)
register_template(
name="vanilla"
)
register_template(name="vanilla")
register_template(
name="vicuna",
format_user=StringFormatter(container=[
"USER: {{content}} ASSISTANT:"
]),
format_user=StringFormatter(container=["USER: {{content}} ASSISTANT:"]),
system=(
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions."
)
),
)
register_template(
name="xuanyuan",
format_user=StringFormatter(container=[
"Human: {{content}} Assistant:"
]),
format_user=StringFormatter(container=["Human: {{content}} Assistant:"]),
system=(
"以下是用户和人工智能助手之间的对话。用户以Human开头人工智能助手以Assistant开头"
"会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与与不道德、"
"不安全、有争议、政治敏感等相关的话题、问题和指示。\n"
)
),
)
register_template(
name="xverse",
format_user=StringFormatter(container=[
"Human: {{content}}\n\nAssistant: "
])
)
register_template(name="xverse", format_user=StringFormatter(container=["Human: {{content}}\n\nAssistant: "]))
register_template(
name="yayi",
format_user=StringFormatter(container=[
{"token": "<|Human|>"},
":\n{{content}}\n\n",
{"token": "<|YaYi|>"},
":"
]),
format_system=StringFormatter(container=[
{"token": "<|System|>"},
":\n{{content}}\n\n"
]),
format_user=StringFormatter(container=[{"token": "<|Human|>"}, ":\n{{content}}\n\n", {"token": "<|YaYi|>"}, ":"]),
format_system=StringFormatter(container=[{"token": "<|System|>"}, ":\n{{content}}\n\n"]),
system=(
"You are a helpful, respectful and honest assistant named YaYi "
"developed by Beijing Wenge Technology Co.,Ltd. "
@@ -711,67 +526,43 @@ register_template(
"explain why instead of answering something not correct. "
"If you don't know the answer to a question, please don't share false information."
),
separator=[
"\n\n"
],
stop_words=[
"<|End|>"
]
separator=["\n\n"],
stop_words=["<|End|>"],
)
register_template(
name="yi",
format_user=StringFormatter(container=[
"<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"
]),
separator=[
"\n"
],
stop_words=[
"<|im_end|>"
],
replace_eos=True
format_user=StringFormatter(container=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
separator=["\n"],
stop_words=["<|im_end|>"],
replace_eos=True,
)
register_template(
name="yuan",
format_user=StringFormatter(container=[
"{{content}}",
{"token": "<sep>"}
]),
separator=[
"\n"
],
stop_words=[
"<eod>"
],
replace_eos=True
format_user=StringFormatter(container=["{{content}}", {"token": "<sep>"}]),
separator=["\n"],
stop_words=["<eod>"],
replace_eos=True,
)
register_template(
name="zephyr",
format_user=StringFormatter(container=[
"<|user|>\n{{content}}</s><|assistant|>"
]),
format_system=StringFormatter(container=[
"<|system|>\n{{content}}</s>",
]),
system="You are a friendly chatbot who always responds in the style of a pirate"
format_user=StringFormatter(container=["<|user|>\n{{content}}</s><|assistant|>"]),
format_system=StringFormatter(
container=[
"<|system|>\n{{content}}</s>",
]
),
system="You are a friendly chatbot who always responds in the style of a pirate",
)
register_template(
name="ziya",
format_user=StringFormatter(container=[
{"token": "<human>"},
":{{content}}\n",
{"token": "<bot>"},
":"
]),
separator=[
"\n"
]
format_user=StringFormatter(container=[{"token": "<human>"}, ":{{content}}\n", {"token": "<bot>"}, ":"]),
separator=["\n"],
)

View File

@@ -4,9 +4,11 @@ from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
from ..extras.logging import get_logger
if TYPE_CHECKING:
from datasets import Dataset, IterableDataset
from transformers import TrainingArguments
from llmtuner.hparams import DataArguments
@@ -44,12 +46,10 @@ def infer_max_len(source_len: int, target_len: int, data_args: "DataArguments")
def split_dataset(
dataset: Union["Dataset", "IterableDataset"],
data_args: "DataArguments",
training_args: "TrainingArguments"
dataset: Union["Dataset", "IterableDataset"], data_args: "DataArguments", training_args: "TrainingArguments"
) -> Dict[str, "Dataset"]:
if training_args.do_train:
if data_args.val_size > 1e-6: # Split the dataset
if data_args.val_size > 1e-6: # Split the dataset
if data_args.streaming:
val_set = dataset.take(int(data_args.val_size))
train_set = dataset.skip(int(data_args.val_size))
@@ -63,5 +63,5 @@ def split_dataset(
if data_args.streaming:
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
return {"train_dataset": dataset}
else: # do_eval or do_predict
else: # do_eval or do_predict
return {"eval_dataset": dataset}